PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 72 | 558-564
Article title

Yeast metabolic adaptation to environment

Content
Title variants
Languages of publication
EN
Abstracts
EN
Yeast metabolism has been a subject of research since the XIX century, when Louis Pasteur had proved that yeast are live organisms and fermentation is one of the processes to produce molecular energy. Yeast ability to ferment is a consequence of alcohol dehydrogenase (ADH) activity, the group of enzymes responsible for sugar conversion in to ethanol as ADH1, and alcohol metabolism as a source of carbohydrates (ADH2). The group of ADH enzymes play a crucial role for yeast adaptation especially in rich sugar environments such as after angiosperm occurrence. Evolution of yeast genes is based on chromosomal multiplication event, previously explained as a Whole Genome Duplication (WGD), presently it has been proven that the yeast common ancestor is a hybrid from different strains. Duplication cause that some multiplaies genes accumulate mutation without cell growth burden and consequently favor formations exploiting new features of proteins. Yeast ability to ferment make them dominate in a sugar environment, however Saccharomyces cerevisiae evolve some quorum-sensing mechanism, which plays crucial role in population messengers as tyrosol which is signaling about cellular density in culture. Moreover there are scientific reports about yeast specific social-wraps which suggest that yeast surviving depends on more complex mechanisms, which pose challenges for researchers. The aim of this article is a short review of yeast metabolic strategy which allow yeast to dominate in high sugar environments and abilities which make yeast so important in nature.
Year
Volume
72
Pages
558-564
Physical description
References
  • [1] R. Schneiter, Genetics, Molecular and Cell Biology of Yeast, 2004.
  • [2] B. Drygaś, P. Rurka, K. Rashid, P. Drygaś, M. Biesiadecka, World Scientific News 57 (2016) 397-403.
  • [3] J. A. Barnett, Yeast 14(16) (1998) 1439-1451.
  • [4] J. A. Barnett, Microbiology 149 (2003) 557-567.
  • [5] J. A. Barnett, K.-D. Entian, Yeast 22(11) (2005) 845-894.
  • [6] F. Rodrigues, P. Ludovico P., C. Leão., Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism; Biodiversity and Ecophysiology of Yeasts (2006) 101-122.
  • [7] P. J. Chambers, I. S. Pretorius, Fermenting knowledge: the history of winemaking, science and yeast research, EMBO reports 11(12) (2010) 914-920.
  • [8] R. H. De Deken, J. Gen. Microbiol. 44(2) (1966) 149-156.
  • [9] S. Marsit, S. Dequin, FEMS Yeast Res. 15(7) (2015).
  • [10] A. Hagman, T., Säll T, J. Piškur., FEBS J. 281(21) (2014) 4805-4814.
  • [11] A. Misiewicz, Advances in Microbiology 53(3) (2014) 211-222.
  • [12] J. P. Van Dijken, W. A. Scheffers, FEMS Microbiology reviews 32 (1986) 199-224
  • [13] A. P. Sims, J. A. Barnett, Journtal of General Microbiology 106 (1978) 277-288.
  • [14] A. Hagman, T. Säll, Compagno C., Piskur J., PLOS ONE 8(7) (2013).
  • [15] H. N. Carlsen, Degn H., Lloyd D., Microbiology 137 (1991) 2879-2883.
  • [16] V. Contamine, M. Picard, Microbiol Mol Biol Rev 64(2) (2000) 281-315.
  • [17] J. Piskur, E. Rozpedowska, S. Polakova, A. Merico, C. Compagno, Trends Genet. 22(4) (2006) 183-186.
  • [18] M. Kellis, B. W. Birren, E. S. Lander, Nature 428(6983) (2004) 617-624.
  • [19] K. H. Wolfe, PLoS Biol. 13(8) (2015).
  • [20] S. Dashko, N. Zhou, C. Compagno, J. Piskur, FEMS Yeast Res. 14(6) (2014) 826-832.
  • [21] S. Magadum, U. Banerjee, P. Murugan, D. Gangapur, R. Ravikesavan, J. Genet. 92(1) (2013) 155-161.
  • [22] A. M. Selmecki, Y. E. Maruvka, P. A. Richmond, M. Guillet, N. Shoresh, A. L. Sorenson, S. De, R. Kishony, F. Michor, R. Dowell, D. Pellman, Nature 519(7543) (2015) 349-352.
  • [23] J. L. Gordon, K. P. Byrne, K. H. Wolfe, PLoS Genet. 5(5) (2009).
  • [24] M. Marcet-Houben, T. Gabaldón, PLoS Biol. 13(8) (2015).
  • [25] Y. Shibata, A. Malhotra, S. Bekiranov, A. Dutta, Nucleic Acids Res 37 (19) (2009) 6454-6465.
  • [26] C. Roy, I. Deo, Journal of Biodiversity and Conservation 6(1) (2014) 41-49.
  • [27] D. R. Scannell, G. Butler, K. H. Wolfe, Yeast 24(11) (2007) 929-942.
  • [28] B. Dujon, Nat. Rev. Genet. 11(7) (2010) 512-524.
  • [29] H. C. Causton, B. Ren, S. S. Koh, C. T. Harbison, E. Kanin, E. G. Jennings, T. I. Lee, H. L. True, E. S. Lander, R. A. Young, Mol. Biol. Cell. 12(2) (2001) 323-337.
  • [30] A. Hagman, Evolution of Yeast Respiro-Fermentative Lifestyle and the Underlying Mechanisms Behind Aerobic Fermentation (2013) 1-62.
  • [31] B. Guzmán, M. A. Lachance, C. M. Herrera, Mol. Phylogenet. Evol. 68(2) (2013) 161-175.
  • [32] M. Avbelj, Zupan J., Raspor P., Appl. Microbiol. Biotechnol. 100(18) (2016) 7841-7852.
  • [33] B. A. Montelone, eLS (2015) 1-7.
  • [34] J. E. Haber, Genetics 191(1) (2012) 33-64.
  • [35] I. Stefanini, L. Dapporto, L. Berná, M. Polsinelli, S. Turillazzi, D. Cavalieri, PNAS 113(8) (2016) 2247-2251.
  • [36] I. Stefanini, L. Dapporto, J.-L. Legras, A. Calabretta, M. Di Paola, C. De Filippo, R. Viola, P. Capretti, M. Polsinelli, S. Turilazzi, PNAS 109(33) (2012) 13398-13403.
  • [37] B. Gallone, J. Steensels, T. Prahl, L. Soriaga, V. Saels, B. Herrera-Malaver, A. Merlevede, M. Roncoroni, K. Voordeckers, L. Miraglia, Cell 166(6) (2016) 1397-1410.
  • [38] R. Lagunas, Yeast 2(4) (1986) 221-228.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-725bcbc1-cecb-448d-80b7-0617d801eeb3
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.