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ABSTRACT 

Comprehensive biological research shows that genomic information garnered over the years is 

not enough to completely understand biological systems even at the cellular level. Integrative omics 

focuses on the integration of multiple omics data types, with an unceasing improvement of high-content, 

real-time, multimodal, multi-omics technologies. This will lead to a deep understanding of biological 

systems. Multi-omics can be used to profile genetic, transcriptomic, epigenetic, spatial, proteomic and 

lineage information in single cells. This transformative method provides bioinformatics and integrative 

methods that can be used through multiple types of data, and it can identify relationships within cellular 

modalities, provide a deeper representation of cell state, and aid assembly of data sets to provide useful 

knowledge. Here, we discuss the challenges of multiple omics datatype integration, limitations of the 

complex machine learning models and recent technology advances in multi-omics data integration. 
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1.  INTRODUCTION 

 

Multi-omics is a new biological analysis approach where multiple "omes" datasets are 

integrated into one set of “omes”. Such multiple “omes” include the genome, transcriptome, 

proteome, metabolomes, epigenomes and microbiome [1]. The study of DNA, mRNA and 

proteins which makes up the central dogma of a living organism, can be broadly denoted as 

genomics, transcriptomics and proteomics. Genomics which studies the genetic blueprint of a 

cell entails investigating the DNA to identify the presence or absence of certain genes [2]. 

Genomics approaches have been extensively explored in identifying the genes and 

genetic loci involved in the development of human diseases [3] while transcriptomics studies 

the transcribed genetic material i.e. all RNA transcripts including ribosomal RNA,  messenger 

RNA and other non-coding RNA, which are actively expressed during certain processes to 

broadly reflect the functional state of the cell [2].  

Proteomics consists of all the proteins that are expressed in a cell and they help in 

understanding the flow of information within the cell. In the central dogma process, the matured 

RNA is transcribed into proteins. The structure of a protein is quite complex, they exhibit 

different conformational structures, different interactions and localizations depending on 

temporal and spatial factors. Other aspects include lipidomics (which study the complex 

analysis of lipids) and glycomics; the study of all glycan structures of an organism, although 

they are not a part of the central dogma analysis [2]. The constant advancement of high 

throughput technologies in generating diverse types of omics data has contributed tremendously 

to human health and the treatment of diseases [4].  

Although extensive simultaneous analysis has been conducted at different omics levels 

including gene expression, mRNA, copy number variations, microRNA and DNA methylation 

[5], integrative omics analysis offers a more holistic and powerful way of improving the 

strength of single omics analysis efficiently enough to study life in a concerted way [6]. 

Integrative omics analysis focuses on the integration of multiple omics data types for the 

same cohort of samples [6], For example, analysis of multiple datasets can be used for detecting 

suicidal markers in depressed patients. In other words, the single omics analysis can be referred 

to as horizontal integration (the integration of a specific type of omics data across different 

samples.  

Biomedical data are becoming increasingly complex, from the quantity to the quality of 

the data. High-throughput data acquisition techniques and their digitization have massively 

increased sample number, whereas heterogeneity includes biologically related features from 

clinical metadata and multiple omics data type. Furthermore, data could be collected via 

multiple platforms [7], thereby introducing bias, complexity, and noise. Some other omics-

specific problems include ethical standards, study framework, management of data sharing, 

reproducibility of the research [2] etc.  

Machine learning methods are therefore appropriate for data modelling and integration of 

multi-omics data in these situations [3]. However, it is important to apply algorithms that suit 

the data to be used whether it’s a classification or clustering algorithm [8]. 
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2.  CHALLENGES OF MULTI OMICS 

2. 1. Curse of dimensionality 

Current trends have identified integrative analysis of multi-omics as the next step in 

understanding complex biological systems. The inclusion of different omics data would bring 

about new information in the functions of pathways and systems associated with a disease trait, 

although this process is not void of challenges. Dimensionality reduction methods are 

frequently applied in omics studies because datasets from each level are faced with the q >> n 

problem, where the number of features in a study increases with no proportional increase with 

the samples [9]. This curse of dimensionality problem makes most robust algorithms vulnerable 

to the overfitting problem [10]. Random noise in samples may be prone to overfitting issue and 

lead to poor generalization performance [5]. Dimensionality reduction-based methods in 

machine learning are used to perform feature selection or feature extraction [11]. Feature 

extraction transforms datasets from a higher dimensionality to a lower dimensionality, whereas 

selection of features works by reducing dimensionality through identifying only a  group of 

important features [9], [12], [13]. Therefore, in employing dimension reduction techniques, 

important features that can be used for prediction and model performance is improved as multi-

collinearity between features is removed.  

 

2. 2. Data heterogeneity and Data Missingness 

Another challenge associated with the incorporation of diverse types of data in a single 

model is heterogeneity. One of many reasons for data heterogeneity is the variability of 

platforms used in generating multi-omics data and the different data storage and formats. The 

majority of multi-omics integrative analysis tools require data in specific formats, most notably 

the Feature X Sample matrix [14], therefore the problem of data missingness in the construction 

of a model reduces the model's predictive power and can lead to spurious relationship or 

correlations. Removal of missing observations is a common way to handle missing data, but it 

is very expensive when patient samples are already very limited. Data imputation based on 

known data is a better way to solve this problem. Others include the difference in attributes, 

scaling and distribution, and a variety of multi-modality in the data such as the undirected 

categories, intervals [9]. Therefore, individual omics data need to be pre-processed, such pre-

processing process includes data filtering, normalization (this can handle mismatched 

distribution), quality control checks etc. before integration[14]. Note that without proper 

normalization, additional weights would be given to more features and there would be high 

noise [15].  

 

2. 3. Class imbalance  

ML-based models in omics studies are frequently challenged the class imbalance problem 

[9], [16]. For instance, a machine learning classifier trained to predict the location of genes 

causing antibiotic resistance in the genetic makeup of the organism may suffer from the class 

inequality problem, which means that the data to be used contained more negative or control 

samples than case or positive samples. Take, for instance, the protein structures dataset used in 

predicting interactions between amino acid pairs can suffer from rarity or imbalance problem 

due to the sparseness of the contacts [17]. Other omics prediction-based problems includes: 

Post translation modifications [18], Protein-DNA binding residue [19], DNA methylation sites 

[20], [21], protein-protein interactions [22], [23] and functional antimicrobial peptides [24] etc. 
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2. 4. Scalability issues 

ML algorithms can create models whose performance improves as more data becomes 

available.  However, large data types collected from many high-throughput omics systems may 

pose scalability issues. Executing multiple omics analysis based on Machine Learning methods 

on a single computer is becoming increasingly difficult. However, advancements in big data 

optimization algorithms, real-time ML, parallel processing in ML algorithms, and large-scale 

cloud computing analysis is now possible [9]. 

 

 

3.  ROBUST APPROACHES IN SOLVING MULTI-OMICS INTEGRATION  

     CHALLENGES 

 

Studies have established the importance of omics data type integration in revealing which 

biological pathways vary between the target and the control group, therefore the analysis of 

only a genomic or proteomic data type would limit these correlations and provide a partial view 

of the complex biological system. By combining various types of data, researchers can 

overcome the limitations of individual studies and better identify disease-causing variants and 

their downstream molecular targets. However, the combined examination of multi-omics data 

is not void of computational challenges (problems already discussed above), it intensifies the 

challenges linked to single-cell omics. Therefore, robust models are needed to indeed execute 

integrative analysis efficiently. In this regard, machine learning-based approaches have been 

employed as a key player in circumventing the specific computational challenges involving 

multiple omics data [25], [26]. 

 

3. 1. Dimension reduction-based methods  

Dimension reduction methods assume that the data has an inherent low dimensional 

representation, with the low dimension frequently corresponding to the number of variables.  

Machine learning-based Dimension reduction techniques may be categorized into feature 

extraction (FE) and feature selection (FS). Feature selection selects one of the smallest sets of 

features guaranteeing the highest classification performances. Alternatively, the maximal set 

including all the relevant features can be chosen, this is known as feature extraction. Variable 

selection has been widely used to analyze single-level omics data, where the dimensionality of 

omics features is typically much greater than the sample size. Identifying a subset of important 

features usually results in improved interpretability and improved prediction using the chosen 

model. Both are necessary for the success of the combined analysis of multi-omics data. This 

explains, at least in part, why the variable selection is one of the most powerful and widely used 

data integration tools [6]. 

Principal component analysis (PCA), joint non-negative matrix factorization (NMF), 

multi-omics factor analysis (MOFA) and multiple co-inertia analysis (MCIA) are exemplars of 

machine learning feature extraction models that are used in the integrative analysis. These FE 

methods can capture linear interactions in the data. Nonlinear relationship methods including 

representation learning, t-SNE and autoencoder exist etc. ML-based feature selection 

techniques are broadly categorized into filter, wrapper and embedded methods. Filter methods 

like correlation-based FS (CFS), maximal-relevance and minimal-redundancy (mRMR), 

ReliefF [27] and Information Gain are employed as a pre-processing step before training any 
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model, while wrapper methods such as support vector machine recursive feature elimination 

(SVM-RFE) [28] and Boruta [29] can automatically judge the importance of features, Boruta 

can work so well without prior specific input by the user to extract importance. Embedded 

methods that comprise the least absolute shrinkage and selection operator (LASSO) [30], 

Elastic Net [31], stability selection, etc. can carry out feature selection, a portion of the model 

building process. Extraction of Features is commonly used in the unsupervised integrative 

analysis, i.e. when the target labels are not known [9]. In multi-omics studies, FE can aid in the 

identification of disease subgroups. Many feature extraction methods for integrative omics 

exploratory analysis have been proposed in recent years, with many of them based on PCA 

[32]. A specific advantage of using a linear model is that they give some interpretations for the 

features in each group that is more observed, unlike some other methods, for instance, the 

similarity-based dimension technique, which ignores the original feature if the similarity 

between the sample is scored [11]. 

 

3. 2. Data Heterogeneity 

As earlier stated, the integration of different data types into a single model for prediction 

is one of the biggest challenges due to the heterogeneity of the data. Previous studies have 

outlined the application of machine learning algorithms in handling heterogeneous data in many 

ways. These algorithms include Penalized linear models such as LASSO, ElasticNet and 

TANDEM, Decision trees and Random Forest for tree-based models, Bayesian multitask and 

simple multitask as Multiple kernel learning models, Graphs and Networks (SNF, NetlCS, 

PARADIGM, HetroMed), Latent Sub-space clustering (iCluster+, Scluster, MV-RBM) and 

Deep learning (Multimodal DBN, Multimodal DNN, Improved CPR, AuDNNsynergy).  Other 

new models designed in investigating multiomics includes, iClusterBayes [33], Bayesian 

multiple kernel learning (BMKL) [34] was used to integrate data from different profiling 

sources (CNA, DNA methylation, gene expression, reverse phase protein array (RPPA)) for the 

prediction of drug sensitivity in breast cancer cell lines. 

 

Table 1. Machine learning models in addressing multi-omics heterogeneity issue. 

 

APPROACH ALGORITHMS DESCRIPTION USE-CASE REFERENCES 

Network-based 
Similarity network 

fusion (SNF) 

It works by 

combining individual 

similarity from 

various data sources 

or types to create a 

single network that 

captures the 

complementary 

information. 

Another study, 

incorporated SNF, 

JIVE, MCIA, MFA 

and MCCA to 

investigate multi-

omics data.  It 

suggested that multi-

omics data 

integration largely 

benefits from a 

feature selection step 

and that SNF is a 

robust method than 

others. 

[35] 
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Network-based 

integration of multi-

omics data (NetICS) 

Integrates multi-

omics data on a 

directed functional 

interaction network. 

It uses a per-sample 

network diffusion 

model on a directed 

functional interaction 

network and derives a 

population-level gene 

ranking by 

aggregating 

individual rankings 

and provides a global 

ranking for all 

samples 

The heterogenous 

multi-omics data was 

integrated into a 

directed interaction 

network in the 

prioritization of 

cancer genes 

[36] 

 

Pathway Recognition 

Algorithm using Data 

Integration on 

Genomic models 

(PARADIGM) 

Probabilistic 

graphical models of 

cellular pathways by 

using a factor graph 

to represent the 

relations between the 

entities within the 

pathways 

PARADIGM 

approach was used 

for analyzing gene 

expression and copy 

number data from 

TCGA Glioblastoma 

(GBM) revealing 4 

subtypes of the 

disease. 

Another study 

showed the 

application of 

PARADIGM to 

derive novel insights 

into breast cancer 

using copy number 

and gene expression 

data 

[37] 

 

Heterogenous-

information networks 

(HetroMed) 

Heterogenous 

information networks 

can handle any kind 

of data and it's mostly 

used for medical 

diagnoses. 

The model was used 

to extract latent low 

dimensional features 

from clinical record 

data for robust 

medical diagnosis. 

[38] 

Concatenation-based 

Multiple Kernel 

learning 

Simple multiple 

kernel learning 

(simple MKL) 

The simple and 

Bayesian multiple 

kernels employ 

individual kernel 

function on different 

sources of data. 

Simple MKL 

algorithm was 

applied to different 

data types in 

detecting 

glioblastoma 

multiforme. 

[39], [40] 

Penalized-Linear 

based 

ElasticNet and Least 

absolute shrinkage 

TANDEM, an 

ElasticNet based two-

stage model is useful 

Elastic Net was 

applied to investigate 

drug-response 

[41], [42] 
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and selection operator 

(LASSO), TANDEM 

when data sources 

with infinite 

attributes outnumber 

data sources with 

binary attributes. 

obtained from the 

CCLE using multi-

omics data 

TANDEM uses a 

two-stage feature 

selection approach, 

with the first stage 

utilizing all binary 

variables, referred to 

as upstream data, and 

the second stage 

utilizing continuous 

gene expression 

variables referred to 

as downstream data. 

 

 

 

 

 

 

[43] 

 

Latent Sub-space 

Clustering-based 
iCluster 

Based on joint latent 

variable modelling or 

integrative clustering. 

Data originate from 

low dimensional 

representation, which 

determines the 

distribution of the 

observed data 

iCluster was applied 

to two cancer datasets 

breast cancer and 

lung cancer to 

identify clinically 

relevant disease 

subtypes in latent 

sub-space. 

33 cancers in the pan-

cancer analysis were 

obtained with over 

ten thousand tumours 

and iCluster was 

applied to cluster 

them. 

iCluster used in the 

identification of 

cancer genes from the 

glioblastoma dataset, 

the clustering 

analysis showed three 

distinct subtypes. 

[44] 

 

 

 

 

 

 

[45] 

 

 

 

 

 

 

 

[46] 

 iCluster+ 

Cluster was upgraded 

to iCluster+ to 

include different data 

models for numeric, 

categorical and 

binary values i.e., it 

assumes different 

distribution for 

diverse data types 

iCluster+ identified 

12 distinct clusters 

using mutation, copy 

number, and gene 

expression profiles 

from 729 cancer cell 

lines representing 23 

tumour types from 

CCLE. 

[47] 

 

Mixed variable 

restricted Boltzmann 

machine (MV-RBM) 

To cluster, the data 

are first transformed 

into latent sub-space 

and then clustering 

In diabetes mellitus 

studies, data from 

highly heterogeneous 

sources such as 

[48] 
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analysis would be 

performed on the 

latent profiles 

demographics, 

diagnosis, 

pathologies, and 

treatments were 

transformed into 

latent profiles 

(homogenous 

representation) using 

MV-RBM. 

Deep Learning 

Deep Belief Network 

(DBN) 

Deep Neural Network 

(DNN) 

Improved Clustering 

and Page Rank (CPR) 

Autoencoders 

(AuDNNsynergy) 

 

Deep learning is 

composed of multiple 

layers of artificial 

neurons, each with its 

weight value that is 

updated by the 

gradient descent 

algorithm during 

backpropagation to 

minimize the global 

loss function. 

DBN is mostly used 

in feature 

representation as it's 

built with multiple 

Boltzmann machines 

concatenated in a 

stacked manner with 

an input visible layer 

and an adjacent 

hidden layer trained 

with the aim to learn 

a probability 

distribution in the 

input set. 

Multiple sources of 

omics data were 

combined with 

clinical data to 

perform integrated 

clustering using 

DBN. 

 

CPR was applied to 

multiple-omics data 

i.e., gene expression, 

DNA methylation, 

copy number, and 

somatic mutation data 

for five cancer types. 

 

Autoencoder was 

used in identifying 

the prognostic 

subtypes of high-risk 

neuroblastoma using 

CAN and gene 

expression data. 

[49] 

 

 

 

 

 

 

 

[50] 

 

 

 

 

 

 

 

[51] 

 

 

3. 3. Class Imbalance Learning models (CIL) 

As earlier discussed, class imbalance problem arises as a result of disproportionality 

between the classes. Here, the minority or positive class which are the target always have 

smaller samples compared to the negative or majority class. 

In other words, the proportionality in the two classes can be regarded as bias thereby 

favoring the majority class when the performance evaluation is measured. Therefore, robust 

models are needed in overcoming this challenge especially in the area of integrative analysis 

where multiple data from different sources are analyzed.  

Class imbalance learning models can be grouped into data sampling and dimension 

reduction methods, ensemble modelling and cost-sensitive learning and asymmetric 

classification [52]. Data sampling method is the easiest way in tackling the class 

disproportionality problem. Data sampling can be categorized into the under-sampling of the 

negative class and the oversampling of the target class. Prior to applying the classifier, the 
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dataset is sampled by randomly oversampling and random under-sampling or heuristically 

using one-sided selection. Random oversampling involves randomly oversampling the minority 

class by duplication, leading to the generation of new sample from current sample. This new 

samples obtained from the current sample can be created by an oversampling technique known 

as SMOTE (Synthetic Minority Oversampling Technique) [9] and CBO (Cluster based 

Oversampling) [53]. Although, data sampling is easy, it cannot be accounted for as a valid 

solution to the class imbalance problem because so many samples are forfeited. The one-sided 

selection (OSS) is an under-sampling technique that chooses to carefully exclude samples from 

the negative class i.e., samples that are correctly classified after random sampling and k-nearest 

neighbor while leaving out the minority class which is the target untampered. Another instance 

is the use of focal loss that penalizes the majority sample during loss calculation and give more 

weight to minority class. Dimension reduction techniques have been previously discussed and 

some have been engineered in the imbalance challenge. However, with the consistent 

application of data sampling approach applied in solving class imbalance in the medical field, 

more scientist is coming up with combining both under-sampling and oversampling techniques. 

Thereby, overcoming limitations of a single method with the other. 

Cost sensitive learning and ensemble methods are termed as algorithmic-level based 

approaches i.e., they can modify the classifier’s performance with the unbalanced dataset. Cost 

sensitive methods keep the data used in training unchanged while assigning penalty cost or 

weights to the misclassification of minority class. The idea of CSL in imbalanced problem is to 

cause the ML algorithm to pay more attention to minority sample class. Ensemble deals with 

training a combination of multiple component learners to significantly better the generalization 

ability of single models.   

Ensemble can be seen as a wrapper to other methods [9]. Examples of algorithms 

incorporated with cost sensitive weighting includes: SVM, ANN, other cost sensitive 

approaches are SVM_Weight and Weighted ELM (WELM) [9], [52]. Ensemble based models 

includes EasyEnsemble and Balanced cascade [54].  

Asymmetric classifiers, is an addition to the CIL algorithms [54]. They are very similar 

to the cost sensitive learning algorithms but vary in the way weights are assigned. Unlike cost 

sensitive, weights assigned to the false negative and false positive samples can be the same. In 

other words, different weights are not necessarily the aim of the classifier.  

 

3. 4. Data scalability models  

The execution of integration analysis on ML models on a single computer has become a 

lot difficult due to issues like scalability. The performance of data driven models gets better 

with the constant availability of more and more dataset. However, how can we resolve the issue 

of big data scalability if performance relies on robustness of the data.  

Computationally efficient models proposed for big data scalability includes online ML 

algorithms, cloud computing and distributed systems for implementation. Here, machine 

learning and large-scale cloud computing analysis which are the future of multi-omics 

integration would be briefly discussed. 

Online based algorithms such as incremental-decremental support vector machines, 

Online-sequential extreme learning machine and cost sensitive hinge loss support vector 

machines are models implemented in addressing scalability (CSHL-SVM) [55]. Online learning 

algorithms have been so efficient in big data applications because they can train models as the 

dataset are inputted at once without repeating the process from the beginning, which is literally 
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more optimal, unlike some other learning algorithms which needs the data to be within is reach 

in memory before training can begin, online algorithms do not need samples to be stored in 

memory. i.e., it prevents unnecessary space consumption and optimal processing of big data. 

For instance, OS-ELM (Online-sequential extreme learning machine) is modelled in such a way 

that it can analyze data has many times as possible without repeating each process when a chunk 

of samples or a single data is added [9].  

Non-iterative algorithms such as random vector functional link (RVFL) [56], extreme 

learning machines like the dual-layer kernel extreme learning machine (DKELM) [57] . Non 

iterative models wade off computational complexity as seen in iterative models that requires 

parameter tuning which can be very exhaustive and time laborious. RVFL is a randomized 

version of functional link network that can constantly generate weights and keep it fixed during 

training. Other models still useful in solving scalability issues includes echo state network and 

liquid state machine [9]. 

Implementation of distributed systems is another approach in solving data scalability. 

Here, big data are analyzed on several computers that are connected in a cluster like manner. 

This enhances computational power to process the data in real-time unlike having a standalone 

system carry the workload. More so, several parallel machine learning models that are built on 

MapReduce programming framework and its open-source implementation Hadoop or other 

variations such as Apache Spark [58], Spark MLlib [59] and Apache mahout [60] have been 

developed to obtain the desired objective. Examples of algorithms based on MapReduce and 

spark or singly includes CurboSpark, spark-based parallel SHC algorithm (SHAS), parallel 

back propagation neural network (PBNN), K-means particle swarm optimization (KMPSO) 

[61]and a recent addition is the clustering algorithm based on Hadoop known as KAMILA 

(KAYmeans for MIxed Large data) [62] designed for multiple data types etc.   

MapReduce have been employed in a wide variety of supervised, unsupervised, 

reinforcement learning and deep learning addressing scalability issues because of its fast speed 

and optimal training time when handling a large number of nodes in multiple data type analysis 

[63] while Spark is known for its easiness of use and fault-tolerance, thereby improving learning 

that is required for multiple iterations [64].In addition, other alternatives like vertical scaling 

approaches such as GPUs, entails the boosting of a single machine's computing power and 

storage capacity. 

Another approach is cloud computing. Why cloud computing to integrate data types or 

for computationally efficient analysis? Cloud computing is a scalable solution because it offers 

a wide range of opportunities ranging from the benefits of virtualized resources, 

containerization, scalable data storage, security, flexible data access and also allows parallelism 

[65].  

Amazon Web Services (AWS) is an open-source cloud computing platform that 

facilitates the sharing of commonly used datasets stored in the repository. Galaxy cloud allows 

users to install a private galaxy on AWS and EC2 (Elastic Compute Cloud) [9].  BioVLAB is 

another freely accessible bioinformatics system deployed on cloud apart from Galaxy. Users 

have a variety of features that could be manipulated to suite the analysis to be done. BioVLAB-

mCpG-EXPRESS, a cloud-based system that accepts three types of raw omics data (gene 

expression, DNA methylation, and sequence variation) as inputs to do multi-perspective 

analysis [66]. The system also gives the user multi-level interpretation, allowing the user to 

interpret the results at each level. Other omics related open-source frameworks that are 

accessible by many users includes Omics pipe [67], MetaboAnalyst [68] and XCMS online [69]. 
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4.  LIMITATIONS OF MACHINE LEARNING-BASED MODEL IN MULTI-OMIC  

     AND CLINICAL DATA INTEGRATION 

 

There has been significant improvement in research based on integrative analysis due to 

the enormous machine learning models. These significant contributions to the medical field 

have started making changes in our daily lives. Machine learning applications to many areas 

include Internet search, speech recognition, product recommendations, image classification, 

email spam filters [70].  This robust approach has also been implicated in the identification of 

causal variants associated with a disease trait has shown many successes and researchers are 

still harnessing the potential of such approaches to multi-omics integrative analysis. The 

advantages of using machine learning models cannot be overemphasized, as their performance 

is still gaining attention from biomedical researchers. As earlier stated, several ML algorithms 

have been employed in tackling multi-omics and clinical data-based challenges. These 

challenges include high noise, dimensionality problems, overfitting, missingness in the data, 

scalability issues, analytical variance and are not limited to the aforementioned [71]. This aspect 

of the study would be focusing on possible limitations related to the robust approaches used in 

handling biomedical data acquired from diverse modalities.  

 

4. 1. Deep Learning (DL) 

DL is an artificial neural network-based machine learning algorithm (ANN). It operates 

by applying a nonlinear transformation to its input and then using what it learns to generate a 

statistical model as output [72]. Iterations are repeated until the output meets an acceptable level 

of accuracy. The label deep was inspired by the number of processing layers through which 

data must pass. DL is gaining traction as a powerful approach for encoding and learning from 

heterogeneous and complex data in both supervised and unsupervised settings [72]. In the area 

of single-omics, multi-omics and biomedical research, deep learning has gained so much 

traction by researchers as they are well suited to handle complex, heterogeneous and high 

dimensional dataset such as omics dataset.  

 

4. 2. Problems of Deep Learning in omics integration and biomedical data analysis  

Low signal-to-noise ratios, For instance, datasets with unequal proportionality where the 

samples are small compared to a large number of features or high analytical variance frequently 

impede omics data analysis [73]. DL algorithms face the challenge of not only analyzing single-

omics data but also integrating different types of omics layers [72]. Other sources of 

information such as medical images data or clinical health records pose a major problem when 

using deep learning [74], this includes [75]; the volume of the clinical data, the availability of 

massive amounts of EHR data serves as the foundation for the performance of deep learning 

neural networks. In the application of DL to the clinical dataset, a good rule of thumb is to have 

a minimum of 10x of the number of samples as parameters in the network.  

More so, In Africa as a case study, patients clinical records are unautomated and access 

of the masses to hospital facilities would pose a limitation to the amount of available data to 

train a deep learning model. Furthermore, the quality of the data as input is another challenge, 

clinical data are less well-structured, unlike omics data. They are highly heterogeneous, 

ambiguous and incomplete, using such large and diverse datasets to train a deep learning model 

would be very difficult because of issues like data sparsity, redundancy, and missing values. 
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The temporality of the data, diseases are constantly evolving unpredictably over time, and 

existing deep learning models, including those proposed in the medical domain, assume static 

vector-based inputs, making it difficult to handle the time factor naturally. In addition, a model 

with so much accuracy and less interpretability of the result is regarded as a setback in the 

clinical domain. Despite their success in a variety of applications, deep learning models are 

frequently regarded as black boxes. While this may not be a problem in more deterministic 

areas like image classification, it is critical in the health sector to not only perform quantitative 

algorithms but also understand why they work. Indeed, the model's interpretability is crucial in 

determining which phenotypes drive the predictions. 

More so, there is increased complexity pertaining to model design and the computing 

environment required. Although these challenges are still valid because the use of DL methods 

in omics and precision medicine is a recent field, several scientists are putting in work to resolve 

the flaws thus improving its purposes. The raising disposal of medical images, clinical health 

records and as well omics datasets is driving assuring use of deep learning technology, which 

will play a significant role in this field soon [72]. 

 

 

5.  IMPROVED MODELS FOR MULTI-OMIC INVESTIGATION 

 

Some studies have worked in developing new machine learning to investigate several 

omics data types. New approaches can be built based on two or more algorithms by 

concatenating them in a manner that can counteract each model's limitations. This part 

emphasizes a few reformed models designed to integrate multiple omics data. 

[76] designed PALM. It works by using a dynamic Bayesian network to reconstruct a 

unified model and then aligns multiple omics data types. PALM (pipeline for analysis 

longitudinal multi-omics data) was built to overcome some of the limitations of DBNs such as 

sampling and progression differences and in the reduction of a cumbersome number of entities 

and parameters. Although, PALM is a microbiome prediction model, it was implicated in 

multiple omics types (gene expression, metabolites, microbial taxa) and accuracy in prediction 

was validated against Baseline model, MTPLasso and MMvec which are microbe-metabolite 

neural network models. 

[77] designed MSCA. It leverages representation-based methods. MSCA (Multiview 

subspace clustering analysis) was built to overcome the challenges of low-rank representation 

when applied on multiple data types such as omics because they often assume that the dataset 

is linear and cannot utilize the geometric features of the original data. MSCA has been 

implicated using the CCLE dataset of subgroups of tumor cells from multiple origins. MSCA 

applied local structure in preserving important features in the dataset for effective pattern 

identification. Here, the performance of the model with SNF, ANF and iCluster+ was evaluated 

with adjusted rand index score (ARI) at different noise range. The study demonstrated a high 

rand index score using MSCA than other clustering algorithms, indicating better accuracy with 

the complex heterogenous datasets due to the combined effect of low rank representation and 

local structure preservation. 

[78] designed ANF. Affinity Network Fusion is a non-probabilistic network that utilizes 

similarity network fusion but in an upgraded way to counteract some challenges of SNF when 

using heterogeneous data. For instance, weights can be added to each feature in the multiple 

datatypes with a clear interpretation while the previous model is always unweighted and gives 
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a spurious interpretation of the result. ANF applies spectral clustering to reduce noise obtained 

from non-uniform multiple data types (DNA methylation, miRNA and gene expression). ANF 

was applied to the TCGA dataset to cluster cancer patients into groups and identification of the 

cancer subtypes of the patients. The clustering performance of SNF and ANF was evaluated 

with the adjusted rand index (ARI), p-value of the log rank test and normalized mutual 

information (NMI). The study demonstrated that ANF performed better than SNF, it still 

reserved the unstable nature of pair-wise clustering.  

[79] proposed the application of Multiview learning which has been applied in other 

research domains but has not been fully explored in multi-omics data analysis to counteract 

some challenges such as heterogeneity and noisy nature a common problem in this omics 

domain. The study designed a framework based on empirical risk minimization know as MV-

ERM (Multiview Empirical Risk Minimization). This model was designed to address the 

overfitting problem when integrating different multitype data. Here, different views or modes 

represent a fraction of the whole complex processes involved in a biological network. MV-

ERM is modeled as an extension of the existing empirical risk minimization principle (ERM) 

for investigating multiomics data and revealing functional products. 

[80] designed a deep learning-based model that is built on the already developed 

autoencoder known as denoising autoencoder (DAE). The model is an advancement of 

autoencoders that was constructed to solve dimensionality problem in omics integration. 

However, with multiple integrations of omics and clinical data types, autoencoders tend to find 

it difficult to extract informative features because the input and output are equal. To counteract 

the problem of the existing model, DAE trains the model by imposing noise with the input 

dataset to extract only features of importance and transposes the data back to its original form 

by the inbuilt encoder and decoder. To measure the performance of the proposed framework 

used in learning more robust features, multiple omics ovarian data (mRNA, miRNA and CNV) 

was analyzed. The study compared the clustering performance of DAE by measuring the 

silhouette score and log-rank p-values with seven clustering algorithms. DAE had a higher 

silhouette score and lower p-value showing its significance and performance accuracy. 

These models discussed above all performed well based on the different omics data used 

and as such still needs further validation of performance with other data types for 

generalizability. 

 

 

6.  CONCLUSIONS 

 

The vast growth of single-cell technologies is promoting the increase in the volume of 

parameters that can be measured per cell and the number of cells and molecules detected. For 

this reason, there is more interest in integrating cell data across modalities. The development of 

multi-omics is encouraging the efforts to build a comprehensive Human Cell Atlas that includes 

every cell in the human body and that of major model organisms. This will allow subsequent 

experiments to be performed more quickly and cheaply as information can be transferred from 

the genome to new data sets through read alignment. An example of a multi-omics method is 

nanopore sequencing that can sequence RNA and DNA with long reads and can detect 

nucleotide base modifications. Other multi-omics technologies can detect other biomolecules 

like proteins and can reveal information about the expression and differentiation of cells. 

Refinement of multi-omics methods will enable cells to be placed into their spatial context, 
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revealing how cell types differentiate. Thus, different data modalities of single cells within an 

array of experimental conditions will allow us to move beyond a genome/transcriptome-centric 

cell view and learn more about the holistic representation of cells. Here, robust approaches such 

as the diverse machine learning models and even subset of ML, like artificial intelligence has 

been employed by various researchers in a bid to understand underlying mechanisms associated 

with a disease trait. Although it is important to know what models to be used before applying 

it to the collected dataset, because not all models are suitable in investigating multiple omics 

integration analysis. Regardless of challenges or limitations surrounding this new domain, there 

are many benefits of multi-omics integrative analysis in implicating genotype-phenotype 

association in several terminal diseases.  

 

 

References 

 

[1] S. T. O’Donnell, R. P. Ross, and C. Stanton, The Progress of Multi-Omics 

Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level 

Approach, Frontiers in Microbiology, vol. 10. Frontiers Media S.A., p. 3084, Jan. 28, 

2020, doi: 10.3389/fmicb.2019.03084 

[2] P. S. Reel, S. Reel, E. Pearson, E. Trucco, and E. Jefferson, Using machine learning 

approaches for multi-omics data analysis: A review, Biotechnology Advances, vol. 49. 

Elsevier Inc., p. 107739, Jul. 01, 2021, doi: 10.1016/j.biotechadv.2021.107739 

[3] A. Tebani, C. Afonso, S. Marret, and S. Bekri, Omics-based strategies in precision 

medicine: Toward a paradigm shift in inborn errors of metabolism investigations, 

International Journal of Molecular Sciences, vol. 17, no. 9. MDPI AG, Sep. 14, 2016, 

doi: 10.3390/ijms17091555 

[4] D. M. Rotroff and A. A. Motsinger-Reif, Embracing Integrative Multiomics 

Approaches, Int. J. Genomics, vol. 2016, 2016, doi: 10.1155/2016/1715985 

[5] Z. Y. Yang, Y. Liang, H. Zhang, H. Chai, B. Zhang, and C. Peng, Robust Sparse 

Logistic Regression with the (0 < q < 1) Regularization for Feature Selection Using 

Gene Expression Data, IEEE Access, vol. 6, pp. 68586–68595, 2018, doi: 

10.1109/ACCESS.2018.2880198 

[6] C. Wu, F. Zhou, J. Ren, X. Li, Y. Jiang, and S. Ma, A selective review of multi-level 

omics data integration using variable selection, High-Throughput, vol. 8, no. 1, pp. 1–

25, 2019, doi: 10.3390/ht8010004 

[7] N. J. Mulder et al., Development of Bioinformatics Infrastructure for Genomics 

Research in H3Africa, Glob. Heart, pp. 1–8, 2017, doi: 10.1016/j.gheart.2017.01.005 

[8] J. Oyelade et al., Clustering Algorithms: Their Application to Gene Expression Data, 

Bioinform. Biol. Insights, vol. 10, p. 237, Nov. 2016, doi: 10.4137/BBI.S38316 

[9] B. Mirza, W. Wang, J. Wang, H. Choi, N. C. Chung, and P. Ping, Machine learning and 

integrative analysis of biomedical big data, Genes, vol. 10, no. 2. MDPI AG, Jan. 01, 

2019, doi: 10.3390/genes10020087 



World News of Natural Sciences 44 (2022) 43-62 

 

 

-57- 

[10] B. De Meulder et al., A computational framework for complex disease stratification 

from multiple large-scale datasets, BMC Syst. Biol., vol. 12, no. 1, p. 60, Dec. 2018, doi: 

10.1186/s12918-018-0556-z 

[11] N. Rappoport and R. Shamir, Multi-omic and multi-view clustering algorithms: review 

and cancer benchmark. Nucleic Acids Res., vol. 46, no. 20, pp. 10546–10562, Nov. 

2018, doi: 10.1093/nar/gky889. 

[12] Z. M. Hira and D. F. Gillies, A review of feature selection and feature extraction 

methods applied on microarray data, Adv. Bioinformatics, vol. 2015, 2015, doi: 

10.1155/2015/198363 

[13] L. Wang, Y. Wang, and Q. Chang, Feature selection methods for big data 

bioinformatics: A survey from the search perspective, Methods, vol. 111, pp. 21–31, 

2016, doi: 10.1016/j.ymeth.2016.08.014 

[14] I. Subramanian, S. Verma, S. Kumar, A. Jere, and K. Anamika, Multi-omics Data 

Integration, Interpretation, and Its Application, Bioinform. Biol. Insights, vol. 14, p. 

117793221989905, Jan. 2020, doi: 10.1177/1177932219899051 

[15] B. Wang et al., Similarity network fusion for aggregating data types on a genomic scale, 

Nat. Methods, vol. 11, no. 3, pp. 333–337, 2014, doi: 10.1038/nmeth.2810. 

[16] M. W. Libbrecht and W. S. Noble, Machine learning applications in genetics and 

genomics, Nat. Rev. Genet., vol. 16, no. 6, pp. 321–332, Jun. 2015, doi: 

10.1038/nrg3920 

[17] I. Triguero, S. Del Río, V. López, J. Bacardit, J. M. Benítez, and F. Herrera, ROSEFW-

RF: The winner algorithm for the ECBDL’14 big data competition: An extremely 

imbalanced big data bioinformatics problem, Knowledge-Based Syst. vol. 87, pp. 69–79, 

2015, doi: 10.1016/j.knosys.2015.05.027 

[18] J. C. Aledo, F. R. Cantón, and F. J. Veredas, A machine learning approach for 

predicting methionine oxidation sites, BMC Bioinformatics, vol. 18, no. 1, p. 430, Sep. 

2017, doi: 10.1186/s12859-017-1848-9 

[19] J. Hu, Y. Li, M. Zhang, X. Yang, H. Bin Shen, and D. J. Yu, Predicting Protein-DNA 

Binding Residues by Weightedly Combining Sequence-Based Features and Boosting 

Multiple SVMs, IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 14, no. 6, pp. 1389–

1398, 2017, doi: 10.1109/TCBB.2016.2616469 

[20] Z. Liu, X. Xiao, W. R. Qiu, and K. C. Chou, IDNA-Methyl: Identifying DNA 

methylation sites via pseudo trinucleotide composition, Anal. Biochem. vol. 474, pp. 

69–77, Apr. 2015, doi: 10.1016/j.ab.2014.12.009 

[21] W. Zhang, T. D. Spector, P. Deloukas, J. T. Bell, and B. E. Engelhardt, Predicting 

genome-wide DNA methylation using methylation marks, genomic position, and DNA 

regulatory elements, Genome Biol. vol. 16, no. 1, p. 14, Jan. 2015, doi: 10.1186/s13059-

015-0581-9 

[22] Z.-S. Wei, J.-Y. Yang, H.-B. Shen, and D.-J. Yu, A Cascade Random Forests Algorithm 

for Predicting Protein-Protein Interaction Sites, IEEE Trans. Nanobioscience, vol. 14, 

no. 7, pp. 746–60, Oct. 2015, doi: 10.1109/TNB.2015.2475359 



World News of Natural Sciences 44 (2022) 43-62 

 

 

-58- 

[23] Z.-S. Wei, K. Han, J.-Y. Yang, H.-B. Shen, and D.-J. Yu, Protein–protein interaction 

sites prediction by ensembling SVM and sample-weighted random forests, 

Neurocomputing, vol. 193, pp. 201–212, Jun. 2016, doi: 10.1016/j.neucom.2016.02.022 

[24] W. Lin and D. Xu, Imbalanced multi-label learning for identifying antimicrobial 

peptides and their functional types, Bioinformatics, vol. 32, no. 24, pp. 3745–3752, Dec. 

2016, doi: 10.1093/bioinformatics/btw560 

[25] R. Argelaguet et al., Multi‐Omics Factor Analysis—a framework for unsupervised 

integration of multi‐omics data sets, Mol. Syst. Biol., vol. 14, no. 6, Jun. 2018, doi: 

10.15252/msb.20178124 

[26] L. De Cecco et al., Integrative miRNA-Gene expression analysis enables refinement of 

associated biology and prediction of response to cetuximab in head and neck squamous 

cell cancer, Genes (Basel)., vol. 8, no. 1, p. 35, 2017, doi: 10.3390/genes8010035 

[27] K. Kira and L. A. Rendell, Feature selection problem: traditional methods and a new 

algorithm, in Proceedings Tenth National Conference on Artificial Intelligence, 1992, 

pp. 129–134 

[28] A. Adorada, R. Permatasari, P. W. Wirawan, A. Wibowo, and A. Sujiwo, Support 

Vector Machine - Recursive Feature Elimination (SVM - RFE) for Selection of 

MicroRNA Expression Features of Breast Cancer, in 2018 2nd International 

Conference on Informatics and Computational Sciences (ICICoS), Oct. 2018, pp. 1–4, 

doi: 10.1109/ICICOS.2018.8621708 

[29] M. B. Kursa, A. Jankowski, and W. R. Rudnicki, Boruta – A System for Feature 

Selection, Fundam. Informaticae, vol. 101, no. 4, pp. 271–285, 2010, doi: 10.3233/FI-

2010-288 

[30] F. Santosa and W. W. Symes, Linear Inversion of Band-Limited Reflection 

Seismograms, SIAM J. Sci. Stat. Comput., vol. 7, no. 4, pp. 1307–1330, Oct. 1986, doi: 

10.1137/0907087 

[31] H. Zou and T. Hastie, ‘Regularization and variable selection via the elastic net’, J. R. 

Stat. Soc. Ser. B Stat. Methodol., vol. 67, no. 2, pp. 301–320, 2005, doi: 10.1111/j.1467-

9868.2005.00503.x 

[32] C. Meng, O. A. Zeleznik, G. G. Thallinger, B. Kuster, A. M. Gholami, and A. C. 

Culhane, ‘Dimension reduction techniques for the integrative analysis of multi-omics 

data’, Brief. Bioinform., vol. 17, no. 4, pp. 628–641, Jul. 2016, doi: 10.1093/bib/bbv108 

[33] Q. Mo, R. Shen, C. Guo, M. Vannucci, K. S. Chan, and S. G. Hilsenbeck, ‘A fully 

Bayesian latent variable model for integrative clustering analysis of multi-type omics 

data’, Biostatistics, vol. 19, no. 1, pp. 71–86, 2018, doi: 10.1093/biostatistics/kxx017 

[34] J. C. Costello et al., ‘A community effort to assess and improve drug sensitivity 

prediction algorithms’, Nat. Biotechnol., vol. 32, no. 12, pp. 1202–1212, Dec. 2014, doi: 

10.1038/nbt.2877 

[35] G. Tini, L. Marchetti, C. Priami, and M. P. Scott-Boyer, ‘Multi-omics integration-A 

comparison of unsupervised clustering methodologies’, Brief. Bioinform., vol. 20, no. 4, 

pp. 1269–1279, 2018, doi: 10.1093/bib/bbx167 



World News of Natural Sciences 44 (2022) 43-62 

 

 

-59- 

[36] C. Dimitrakopoulos et al., ‘Network-based integration of multi-omics data for 

prioritizing cancer genes’, Bioinformatics, vol. 34, no. 14, pp. 2441–2448, Jul. 2018, 

doi: 10.1093/bioinformatics/bty148 

[37] C. J. Vaske et al., ‘Inference of patient-specific pathway activities from multi-

dimensional cancer genomics data using PARADIGM’, Bioinformatics, vol. 26, no. 12, 

Jun. 2010, doi: 10.1093/bioinformatics/btq182 

[38] A. Hosseini, T. Chen, W. Wu, Y. Sun, and M. Sarrafzadeh, ‘Heteromed: Heterogeneous 

information network for medical diagnosis’, Int. Conf. Inf. Knowl. Manag. Proc., pp. 

763–772, 2018, doi: 10.1145/3269206.3271805 

[39] Y. Zhang, A. Li, C. Peng, and M. Wang, ‘Improve Glioblastoma Multiforme Prognosis 

Prediction by Using Feature Selection and Multiple Kernel Learning’, IEEE/ACM 

Trans. Comput. Biol. Bioinforma., vol. 13, no. 5, pp. 825–835, Sep. 2016, doi: 

10.1109/TCBB.2016.2551745 

[40] A. Rakotomamonjy, ‘SimpleMKL’, vol. 9, pp. 2491–2521, 2008. 

[41] J. Barretina et al., ‘The Cancer Cell Line Encyclopedia enables predictive modelling of 

anticancer drug sensitivity’, Nature, vol. 483, no. 7391, pp. 603–607, Mar. 2012, doi: 

10.1038/nature11003 

[42] Y. Zhang et al., ‘Integrative functional genomics identifies regulatory genetic variant 

modulating  RAB31 expression and altering susceptibility to breast cancer.’, Mol. 

Carcinog., vol. 57, no. 12, pp. 1845–1854, Dec. 2018, doi: 10.1002/mc.22902 

[43] N. Aben, D. J. Vis, M. Michaut, and L. F. A. Wessels, ‘TANDEM: A two-stage 

approach to maximize interpretability of drug response models based on multiple 

molecular data types’, in Bioinformatics, Sep. 2016, vol. 32, no. 17, pp. i413–i420, doi: 

10.1093/bioinformatics/btw449 

[44] R. Shen, A. B. Olshen, and M. Ladanyi, ‘Integrative clustering of multiple genomic data 

types using a joint latent variable model with application to breast and lung cancer 

subtype analysis’, Bioinformatics, vol. 25, no. 22, pp. 2906–2912, Nov. 2009, doi: 

10.1093/bioinformatics/btp543 

[45] K. A. Hoadley et al., ‘Cell-of-Origin Patterns Dominate the Molecular Classification of 

10,000 Tumors from 33 Types of Cancer’, Cell, vol. 173, no. 2, pp. 291-304.e6, Apr. 

2018, doi: 10.1016/j.cell.2018.03.022 

[46] Q. Mo et al., ‘Pattern discovery and cancer gene identification in integrated cancer 

genomic data’, Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 11, pp. 4245–4250, Mar. 

2013, doi: 10.1073/pnas.1208949110 

[47] J. Barretina et al., ‘The Cancer Cell Line Encyclopedia enables predictive modelling of 

anticancer drug sensitivity’, Nature, vol. 483, no. 7391, pp. 603–607, Mar. 2012, doi: 

10.1038/nature11003 

[48] T. D. Nguyen, T. Tran, D. Phung, and S. Venkatesh, ‘Latent patient profile modelling 

and applications with mixed-variate restricted Boltzmann machine’, in Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and 



World News of Natural Sciences 44 (2022) 43-62 

 

 

-60- 

Lecture Notes in Bioinformatics), 2013, vol. 7818 LNAI, no. PART 1, pp. 123–135, doi: 

10.1007/978-3-642-37453-1_11 

[49] M. Liang, Z. Li, T. Chen, and J. Zeng, ‘Integrative Data Analysis of Multi-Platform 

Cancer Data with a Multimodal Deep Learning Approach’, IEEE/ACM Trans. Comput. 

Biol. Bioinforma., vol. 12, no. 4, pp. 928–937, 2015, doi: 10.1109/TCBB.2014.2377729 

[50] M. Kim, I. Oh, and J. Ahn, ‘An Improved Method for Prediction of Cancer Prognosis 

by Network Learning’, Genes (Basel)., vol. 9, no. 10, p. 478, Oct. 2018, doi: 

10.3390/genes9100478 

[51] L. Zhang et al., ‘Deep Learning-Based Multi-Omics Data Integration Reveals Two 

Prognostic Subtypes in High-Risk Neuroblastoma’, Front. Genet., vol. 9, no. OCT, p. 

477, Oct. 2018, doi: 10.3389/fgene.2018.00477 

[52] L. Nanni, C. Fantozzi, and N. Lazzarini, ‘Coupling different methods for overcoming 

the class imbalance problem’, Neurocomputing, vol. 158, pp. 48–61, Jun. 2015, doi: 

10.1016/j.neucom.2015.01.068 

[53] V. H. Barella, E. P. Costa, and A. C. P. L. F. Carvalho, ‘ClusterOSS : a new 

undersampling method for imbalanced learning’, Brazilian Conf. Intell. Syst., pp. 1–6, 

2014 

[54] L. Nanni, C. Fantozzi, and N. Lazzarini, ‘Coupling different methods for overcoming 

the class imbalance problem’, Neurocomputing, vol. 158, pp. 48–61, 2015, doi: 

10.1016/j.neucom.2015.01.068 

[55] B. Gu, X. Quan, Y. Gu, V. S. Sheng, and G. Zheng, ‘Chunk incremental learning for 

cost-sensitive hinge loss support vector machine’, Pattern Recognit., vol. 83, pp. 196–

208, 2018, doi: 10.1016/j.patcog.2018.05.023 

[56] L. Zhang and P. N. Suganthan, ‘A comprehensive evaluation of random vector 

functional link networks’, Inf. Sci. (Ny)., vol. 367–368, pp. 1094–1105, 2016, doi: 

10.1016/j.ins.2015.09.025 

[57] T. V Nguyen and B. Mirza, ‘Dual-layer kernel extreme learning machine for action 

recognition’, Neurocomputing, vol. 260, pp. 123–130, 2017, doi: 

10.1016/j.neucom.2017.04.007 

[58] M. Zaharia et al., ‘This open source computing framework unifies streaming, batch, and 

interactive big data workloads to unlock new applications’, Commun. ACM, vol. 59, no. 

11, 2016, doi: 10.1145/2934664 

[59] X. Meng et al., ‘MLlib: Machine Learning in Apache Spark’, J. Mach. Learn. Res., vol. 

17, pp. 1–7, 2016 

[60] R. Anil et al., ‘Apache Mahout: Machine Learning on Distributed Dataflow Systems’, J. 

Mach. Learn. Res., vol. 21, pp. 1–6, 2020 

[61] M. Sherar and F. Zulkernine, ‘Particle swarm optimization for large-scale clustering on 

apache spark’, 2017 IEEE Symp. Ser. Comput. Intell. SSCI 2017 - Proc., vol. 2018-

Janua, pp. 1–8, 2018, doi: 10.1109/SSCI.2017.8285208 



World News of Natural Sciences 44 (2022) 43-62 

 

 

-61- 

[62] A. H. Foss and M. Markatou, ‘kamila: Clustering mixed-type data in R and hadoop’, J. 

Stat. Softw., vol. 83, pp. 1–44, 2018, doi: 10.18637/jss.v083.i13 

[63] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz, ‘Machine 

Learning with Big Data: Challenges and Approaches’, IEEE Access, vol. 5, no. April, 

pp. 7776–7797, 2017, doi: 10.1109/ACCESS.2017.2696365 

[64] P. Gupta, A. Sharma, and R. Jindal, ‘Scalable machine-learning algorithms for big data 

analytics: a comprehensive review’, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 

vol. 6, no. 6, pp. 194–214, 2016, doi: 10.1002/widm.1194 

[65] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. Ullah Khan, ‘The 

rise of “big data” on cloud computing: Review and open research issues’, Inf. Syst., vol. 

47, pp. 98–115, 2015, doi: 10.1016/j.is.2014.07.006 

[66] M. Oh, S. Park, S. Kim, and H. Chae, ‘Machine learning-based analysis of multi-omics 

data on the cloud for investigating gene regulations’, Briefings in Bioinformatics, vol. 

22, no. 1. Oxford University Press, pp. 66–76, Jan. 01, 2021, doi: 10.1093/bib/bbaa032 

[67] K. M. Fisch et al., ‘Omics Pipe: a community-based framework for reproducible multi-

omics data analysis’, Bioinformatics, vol. 31, no. 11, p. 1724, Jun. 2015, doi: 

10.1093/BIOINFORMATICS/BTV061 

[68] J. Chong et al., ‘MetaboAnalyst 4.0: towards more transparent and integrative 

metabolomics analysis’, Nucleic Acids Res., vol. 46, no. Web Server issue, p. W486, 

Jul. 2018, doi: 10.1093/NAR/GKY310 

[69] E. M. Forsberg et al., ‘Data processing, multi-omic pathway mapping, and metabolite 

activity analysis using XCMS Online’, Nat. Protoc., vol. 13, no. 4, pp. 633–651, Apr. 

2018, doi: 10.1038/nprot.2017.151 

[70] E. G. Dada, J. S. Bassi, H. Chiroma, S. M. Abdulhamid, A. O. Adetunmbi, and O. E. 

Ajibuwa, ‘Machine learning for email spam filtering: review, approaches and open 

research problems’, Heliyon, vol. 5, no. 6, p. e01802, 2019, doi: 

10.1016/j.heliyon.2019.e01802 

[71] J. Fan, F. Han, and H. Liu, ‘Challenges of Big Data Analysis.’, Natl. Sci. Rev., vol. 1, 

no. 2, pp. 293–314, Jun. 2014, doi: 10.1093/nsr/nwt032 

[72] J. Martorell-Marugán et al., ‘Deep Learning in Omics Data Analysis and Precision 

Medicine’, in Computational Biology, Codon Publications, 2019, pp. 37–53 

[73] D. Grapov, J. Fahrmann, K. Wanichthanarak, and S. Khoomrung, ‘Rise of Deep 

Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision 

Medicine’, doi: 10.1089/omi.2018.0097 

[74] D. Ravi et al., ‘Deep Learning for Health Informatics’, IEEE J. Biomed. Heal. 

Informatics, vol. 21, no. 1, pp. 4–21, Jan. 2017, doi: 10.1109/JBHI.2016.2636665 

[75] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, ‘Deep learning for healthcare: 

Review, opportunities and challenges’, Brief. Bioinform., vol. 19, no. 6, pp. 1236–1246, 

May 2017, doi: 10.1093/bib/bbx044 



World News of Natural Sciences 44 (2022) 43-62 

 

 

-62- 

[76] D. Ruiz-Perez et al., ‘Dynamic Bayesian Networks for Integrating Multi-omics Time 

Series Microbiome Data’, mSystems, vol. 6, no. 2, Apr. 2021, doi: 

10.1128/msystems.01105-20 

[77] Q. Shi, B. Hu, T. Zeng, and C. Zhang, ‘Multi-view subspace clustering analysis for 

aggregating multiple heterogeneous omics data’, Front. Genet., vol. 10, no. JUL, p. 744, 

Aug. 2019, doi: 10.3389/fgene.2019.00744 

[78] T. Ma and A. Zhang, ‘Integrate multi-omic data using affinity network fusion (ANF) for 

cancer patient clustering’, in 2017 IEEE International Conference on Bioinformatics 

and Biomedicine (BIBM), Nov. 2017, vol. 2017-Janua, pp. 398–403, doi: 

10.1109/BIBM.2017.8217682 

[79] N. D. Nguyen and D. Wang, ‘Multiview learning for understanding functional 

multiomics’, PLOS Comput. Biol., vol. 16, no. 4, p. e1007677, Apr. 2020, doi: 

10.1371/journal.pcbi.1007677 

[80] L. Y. Guo, A. H. Wu, Y. X. Wang, L. P. Zhang, H. Chai, and X. F. Liang, ‘Deep 

learning-based ovarian cancer subtypes identification using multi-omics data’, BioData 

Min., vol. 13, no. 1, pp. 1–12, Aug. 2020, doi: 10.1186/s13040-020-00222-x 

 


