PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 134 | 2 | 319-325
Article title

Macrophages in Diabetes Mellitus: A Review on Understanding of Macrophage Function

Content
Title variants
Languages of publication
EN
Abstracts
EN
Diabetes mellitus (DM) causes millions of deaths all over the world. Immune system contains macrophages that play very important role in DM. Excessive secretion of different cytokines can induce the DM development. Diabetes mellitus (DM) also affect the function of macrophage. We review the important findings regarding the role of macrophage in DM. This review may emphasize future direction towards development of novel immune-modulatory therapeutic intervention.
Discipline
Year
Volume
134
Issue
2
Pages
319-325
Physical description
Contributors
  • Department of Zoology, Barasat Govt. College, Barasat, Kolkata - 700124, West Bengal, India
  • Department of Zoology, Barasat Govt. College, Barasat, Kolkata - 700124, West Bengal, India
References
  • [1] Espinoza-Jiménez A, Peón AN, Terrazas LI (2012). Alternatively Activated Macrophages in Types 1 and 2 Diabetes. Mediators of Inflammation. doi: 10.1155/2012/815953
  • [2] Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R (2004). Imaging inflammation of the pancreatic islets in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America. 101(34): 12634-12639.
  • [3] Guariguata L, Whiting D, Weil C, Unwin N (2011). The International Diabetes Federation diabetes atlas methodology for estimating global and national prevalence of diabetes in adults. Diabetes research and clinical practice 94(3): 322-332.
  • [4] Reyes JL and Terrazas LI (2007). The divergent roles of alternatively activated macrophages in helminthic infections. Parasite immunology 29(12): 609-619.
  • [5] Martinez FO, Helming L, Gordon S (2009). Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451-483.
  • [6] Larkin JG, Frier BM, Ireland JT (1985). Diabetes mellitus and infection. Postgraduate Medical Journal 61(713): 233-237.
  • [7] Rabinovitch A and Suarez-Pinzon WL (1998). Cytokines and their roles in pancreatic islet β-cell destruction and insulin-dependent diabetes mellitus. Biochemical Pharmacology 55 (8): 1139-1149.
  • [8] Gregory JL, Morand EF, McKeown SJ (2006). Macrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2. Journal of Immunology 177(11): 8072-8079
  • [9] Zaccone P, Feheervari Z, Jones FM (2003). Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. European Journal of Immunology 33(5): 1439–1449.
  • [10] Lumeng CN, Bodzin JL, Saltiel AR (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. Journal of Clinical Investigation 117(1): 175-184.
  • [11] Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (2003). Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 112: 1796-1808.
  • [12] Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL (2014). Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Frontiers in Immunology 5 .doi: 10.3389/fimmu.2014.00470
  • [13] Wood S, Jayaraman V, Huelsmann EJ, Bonish B, Burgad D, Sivaramakrishnan G, Qin S, DiPietro LA, Zloza A, Zhang C, Shafikhani SH (2014). Pro-Inflammatory Chemokine CCL2 (MCP-1) Promotes Healing in Diabetic Wounds by Restoring the Macrophage Response. PLoS One 9(3). doi: 10.1371/journal.pone.0091574
  • [14] Singer AJ, Clark RA (1999). Cutaneous wound healing. The New England Journal of Medicine 341: 738-746
  • [15] Fang Y, Shen J, Yao M, Beagley KW, Hambly BD, Bao S (2010). Granulocyte-macrophage colony-stimulating factor enhances wound healing in diabetes via upregulation of proinflammatory cytokines. The British Journal of Dermatology 162: 478-486.
  • [16] Liu BF, Miyata S,Kojima H, Uriuhara A, Kusunoki H, Suzuki K and Kasuga M (1999). Low phagocytic activity of resident peritoneal macrophages in diabetic mice: relevance to the formation of advanced glycation end products. Diabetes 48(10): 2074-2082.
  • [17] Wen Y, Gu J, Shu-Lian Li, Reddy MA, Natarajan R, Nadler JL (2006). Elevated glucose and diabetes promote interleukin-12 cytokine gene expression in mouse macrophages. Endocrinology 147(5): 2518-2525.
  • [18] Rees D.A, Alcolado J.C (2005). Animal models of diabetes mellitus. Diabetic Medicine 22 (4): 359-370.
  • [19] Guria S, Chatterjee A, Das M (2018). Histological changes of endocrine section of pancreas and liver streptozotocin induced experimental Diabetes Mellitus. International Journal of Current Advanced Research 7(4): 11849-11852.
  • [20] Guria S, Chhetri S, Saha S, Singh G, Saha PB, Chetri N, Sarkar BS and Das M (2013). Study of Cytomorphology of Pancreatic Islets and Peritoneal Macrophage in Alloxan Induced Diabetic Rat: A Mechanistic Insight. Animal Biology Journal 3(3): 101-110.
  • [21] Guria S, Ghosh S and Das M (2014). Diabetogenic action of alloxan on liver histopathology. The Experiment 28(2): 1906-1912.
  • [22] You H, Gao T, Cooper TK, Reeves WB and Awad AS (2013). Macrophages directly mediate diabetic renal injury. American Journal of Physiology - Renal Physiology 305(12): 1719-1727.
  • [23] Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF (2010). Projection of the year 2050 burden of diabetes in the US adult population: dynamic modelling of incidence, mortality, and prediabetes prevalence. Population Health Metrics 8: 29-41.
  • [24] Nguyen D, Ping F, Mu W, Hill P, Atkins RC, Chadban SJ (2006). Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton) 11(3): 226-231.
  • [25] Tesch GH (2007). Role of macrophages in complications of type 2 diabetes. Clinical and Experimental Pharmacology and Physiology 34(10): 1016-1019.
  • [26] Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG (2011). Distinct macrophage phenotypes contribute to kidney injury and repair. Journal of the American Society of Nephrology 22(2): 317–326.
  • [27] Chow F, Ozols E, Paterson DJN, Atkins RC, Tesch GH (2004). Macrophages in mouse type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury. Kidney International 65(1):116-128.
  • [28] Omri S, Behar-Cohen F, de Kozak Y, Sennlaub F, Verissimo LM, Jonet L, Savoldelli M, Omri B, Crisanti P (2011). Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKC- ζ in the Goto Kakizaki rat model. The American Journal of Pathology 179(2): 942-953.
  • [29] Zeng HY., Green WR., Tso MO (2008). Microglial activation in human diabetic retinopathy. Archives of Ophthalmology 126: 227-232.
  • [30] Saika F, Kiguchi N, Matsuzaki S, Kobayashi D, Kishioka S (2019). Inflammatory macrophages in the sciatic nerves facilitate neuropathic pain associated with type 2 diabetes mellitus. Journal of Pharmacology and Experimental Therapeutics 368(3): 535-544.
  • [31] Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota C, Gittes GK (2014). M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proceedings of the National Academy of Science of United States of America 111(13): 1211-1220.
  • [32] Pipeleers D, Ling Z (1992). Pancreatic beta cells in insulin-dependent diabetes. Diabetes Metabolism Research and Reviews 8(3): 209-227.
  • [33] Dor Y, Brown J, Martinez OI, Melton DA (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41-46.
  • [34] Teta M, Rankin MM, Long SY, Stein GM, Kushner JA (2007). Growth and regeneration of adult beta cells does not involve specialized progenitors. Developmental Cell 12(5): 817-826.
  • [35] Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK (2013). No evidence for β cell neogenesis in murine adult pancreas. The Journal of Clinical Investigtion 123(5): 2207-2217.
  • [36] Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P (2010). The polarization of immune cells in the tumour environment by TGF beta. Nature Reviews Immunology., 10(8): 554-567.
  • [37] Delovitch TL, Singh B (1997). The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7: 727-738.
  • [38] Parsa R, Andresen P, Gillett A, Mia S, Zhang XM, Mayans S, Holmberg D, Harris RA (2012). Adoptive Transfer of Immunomodulatory M2 Macrophages Prevents Type 1 Diabetes in NOD Mice. Diabetes 61: 2881-2892.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-70767d03-1961-417d-a527-1653bd1d9089
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.