Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 40 | 1 | 79-97

Article title

Wybrane ksenoestrogeny i ich wpływ na zdrowie człowieka

Content

Title variants

EN
Selected xenoestrogens and their impact on human health

Languages of publication

PL

Abstracts

PL
Ksenoestrogeny to egzogenne związki chemiczne mogące oddziaływać z receptorami estrogenowymi i działać jako agoniści lub antagoniści endogennych hormonów. Egzogenne estrogeny to heterogenna pod względem struktury chemicznej grupa substancji obejmująca metale, związki syntetyczne, takie jak pestycydy, składniki tworzyw sztucznych, a także naturalne substancje roślinne, tj. fitoestrogeny. Do źródeł ksenoestrogenów zalicza się m.in. niektóre tworzywa sztuczne, pestycydy, spaliny, dym tytoniowy, kosmetyki oraz roślin. Istnienie tak wielu potencjalnych źródeł ekspozycji wiąże się z powszechnym narażeniem ludzi na działanie tych związków. Endogenne estrogeny odgrywają istotną rolę na etapie rozwoju oraz w regulacji homeostazy i odpowiedzi organizmu na czynniki środowiskowe. Ksenoestrogeny nie wykazują wszystkich właściwości naturalnie występujących estrogenów, jednakże mogą one naśladować ich działanie lub zaburzać transmisję sygnału z udziałem estrogenów. Wyniki wielu badań sugerują negatywny wpływ ksenoestrogenów na zdrowie człowieka. Niektóre ksenoestrogeny mogą powodować rozwój nowotworów poprzez stymulację proliferacji komórek, angiogenezy i przerzutowania. Z drugiej jednak strony, fitoestrogeny mogą hamować rozwój raka piersi.
EN
Xenoestrogens are typically identified as compounds that can interact with estrogen receptors and thus, can act as agonists or antagonists of endogenous hormones. Exogenous estrogens are highly heterogeneous in structure and include metals and synthetic organic compounds such as pesticides, plastics, as well as natural plant-derived xenoestrogens i.e. phytoestrogens. They originate from a wide variety of commonly used sources, including certain plastics, pesticides, fuels, cigarette smoke, cosmetic products and plants. It means that all human population may be exposed to them. Estrogens are recognized as a critical modulator of development, homeostasis in adulthood and the regulation of response to the environment. Xenoestrogens do not have identical properties to endogenous estrogens but perfectly mimic or interfere with all aspects of estrogen-mediated signaling. The increasing evidence suggests that xenoestrogens may cause adverse health effects. Some of xenoestrogens can promote tumor development through the stimulation of cell proliferation, angiogenesis and metastasis. On the other hand, phytoestrogens have been shown to exert a protective effect against the development of breast cancer.

Discipline

Year

Volume

40

Issue

1

Pages

79-97

Physical description

Contributors

author
  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki
  • Katedra Cytobiochemii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

References

  • Watson CS, Bulayeva NN, Wozniak AL, Alyea RA. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids. 2007; 72: 124-134.
  • le Maire A, Bourguet W, Balaguer P. A structural view of nuclear hormone receptor: endocrine disruptor interactions. Cell Mol Life Sci. 2010; 67: 1219 1237.
  • Amaral Mendes JJ. The endocrine disrupters: a major medical challenge. Food Chem Toxicol. 2002; 40: 781-788.
  • Jakubaszko E. Substancje o działaniu estrogennym uwalniane w środowisku jamy ustnej z materiałów złożonych. Dent Med. Probl 2002; 39: 285-288.
  • Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res. 2003; 17: 845-869.
  • Darbre PD. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006; 26: 191-197.
  • Darbre PD, Harvey PW. Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol. 2008; 28: 561-578.
  • McKinlay R, Plant JA, Bell JN, Voulvoulis N. Endocrine disrupting pesticides: implications for risk assessment. Environ Int. 2008; 34: 168-183.
  • Woźniak M, Murias M. Ksenoestrogeny: substancje zakłócające funkcjonowanie układu hormonalnego. Ginekol Pol 2008; 79: 785-790.
  • Limer JL, Speirs V. Phyto-oestrogens and breast cancer chemoprevention. Breast Cancer Res. 2004; 6: 119-127.
  • Eden JA. Phytoestrogens for menopausal symptoms: a review. Maturitas. 2012; 72: 157-159.
  • Pilšáková L, Riečanský I, Jagla F. The physiological actions of isoflavone phytoestrogens. Physiol Res. 2010; 59: 651-664.
  • Radzikowski C, Wietrzyk J, Grynkiewicz G, Opolski A. Genistein: a soy isoflavone revealing a pleiotropic mechanism of action - clinical implications in the treatment and prevention of cancer. Postepy Hig Med Dosw (Online). 2004; 58: 128-139.
  • Tsuchihashi R, Sakamoto S, Kodera M, Nohara T, Kinjo J. Microbial metabolism of soy isoflavones by human intestinal bacterial strains. J Nat Med. 2008; 62: 456-460.
  • Cederroth CR, Zimmermann C, Nef S. Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol. 2012; 355: 192-200.
  • Lephart ED, Setchell KD, Lund TD. Phytoestrogens: hormonal action and brain plasticity. Brain Res Bull. 2005; 65: 193-198.
  • Brooks JD, Thompson LU. Mammalian lignans and genistein decrease the activities of aromatase and 17beta-hydroxysteroid dehydrogenase in MCF-7 cells. J Steroid Biochem Mol Biol. 2005; 94: 461-467.
  • Almstrup K, Fernández MF, Petersen JH, Olea N, Skakkebaek NE, Leffers H. Dual effects of phytoestrogens result in u-shaped dose-response curves. Environ Health Perspect. 2002; 110: 743-748.
  • Helferich WG, Andrade JE, Hoagland MS. Phytoestrogens and breast cancer: a complex story. Inflammopharmacology. 2008; 16: 219-226.
  • Jenkins S, Betancourt AM, Wang J, Lamartiniere CA. Endocrine-active chemicals in mammary cancer causation and prevention. J Steroid Biochem Mol Biol. 2012; 129: 191-200.
  • Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A. 1997; 94: 14138-14143.
  • Lu R, Serrero G. Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J Cell Physiol. 1999; 179: 297-304.
  • Kim YA, Choi BT, Lee YT, Park DI, Rhee SH, Park KY i wsp. Resveratrol inhibits cell proliferation and induces apoptosis of human breast carcinoma MCF-7 cells. Oncol Rep. 2004; 11: 441-446.
  • Scarlatti F, Sala G, Somenzi G, Signorelli P, Sacchi N, Ghidoni R. Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling. FASEB J. 2003; 17: 2339-2341.
  • Serrero G, Lu R. Effect of resveratrol on the expression of autocrine growth modulators in human breast cancer cells. Antioxid Redox Signal. 2001; 3: 969 979.
  • Garvin S, Ollinger K, Dabrosin C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett. 2006; 231: 113-122.
  • Sgambato A, Ardito R, Faraglia B, Boninsegna A, Wolf FI, Cittadini A. Resveratrol, a natural phenolic compound, inhibits cell proliferation and prevents oxidative DNA damage. Mutat Res. 2001; 496: 171-180.
  • Chang TK, Lee WB, Ko HH. Trans-resveratrol modulates the catalytic activity and mRNA expression of the procarcinogen-activating human cytochrome P450 1B1.Can J Physiol Pharmacol. 2000; 78: 874-881.
  • Ciolino HP, Yeh GC. Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol Pharmacol. 1999; 56: 760-767.
  • Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H i wsp. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem. 1998; 273: 21875-21882.
  • Bhat KP, Lantvit D, Christov K, Mehta RG, Moon RC, Pezzuto JM. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res. 2001; 61: 7456-7463.
  • Banerjee S, Bueso-Ramos C, Aggarwal BB. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res. 2002; 62: 4945-4954.
  • Provinciali M, Re F, Donnini A, Orlando F, Bartozzi B, Di Stasio G i wsp. Effect of resveratrol on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Int J Cancer. 2005; 115: 36-45.
  • Whitsett T, Carpenter M, Lamartiniere CA. Resveratrol, but not EGCG, in the diet suppresses DMBA-induced mammary cancer in rats. J Carcinog. 2006; 5: 15.
  • Whitsett TG Jr, Lamartiniere CA. Genistein and resveratrol: mammary cancer chemoprevention and mechanisms of action in the rat. Expert Rev Anticancer Ther. 2006; 6: 1699-1706.
  • Bove K, Lincoln DW, Tsan MF. Effect of resveratrol on growth of 4T1 breast cancer cells in vitro and in vivo. Biochem Biophys Res Commun. 2002; 291: 1001-1005.
  • Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M i wsp. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology. 2003; 144: 2425-2436.
  • Henson MC, Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med (Maywood). 2004; 229: 383-392.
  • Silva E, Lopez-Espinosa MJ, Molina-Molina JM, Fernández M, Olea N, Kortenkamp A. Lack of activity of cadmium in in vitro estrogenicity assays. Toxicol Appl Pharmacol. 2006; 216: 20-28.
  • Sirchia R, Longo A, Luparello C. Cadmium regulation of apoptotic and stress response genes in tumoral and immortalized epithelial cells of the human breast. Biochimie. 2008; 90: 1578-1590.
  • Czeczot H, Skrzycki M. Kadm – pierwiastek całkowicie zbędny dla organizmu. Postepy Hig Med Dosw. 2010; 64: 38-49.
  • Witkiewicz-Kucharczyk A, Bal W. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett. 2006; 162: 29-42.
  • Akesson A, Julin B, Wolk A. Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res. 2008; 68: 6435-6441.
  • Darbre PD. Aluminium, antiperspirants and breast cancer. J Inorg Biochem. 2005; 99: 1912-1919.
  • Darbre PD. Environmental oestrogens, cosmetics and breast cancer. Best Pract Res Clin Endocrinol Metab. 2006; 20: 121-143.
  • Darbre PD. Underarm antiperspirants/deodorants and breast cancer. Breast Cancer Res. 2009; 11 Suppl 3: S5.
  • Weiss B, Amler S, Amler RW. Pesticides. Pediatrics. 2004; 113(4 Suppl): 1030 1036.
  • Inigo-Nunez S, Herreros MA, Encinas T, Gonzalez-Bulnes A. Estimated daily intake of pesticides and xenoestrogenic exposure by fruit consumption in the female population from a Mediterranean country (Spain). Food Control 2010; 21: 471-477.
  • Bretveld RW, Thomas CM, Scheepers PT, Zielhuis GA, Roeleveld N. Pesticide exposure: the hormonal function of the female reproductive system disrupted? Reprod Biol Endocrinol. 2006; 4: 30.
  • Beard J; Australian Rural Health Research Collaboration. DDT and human health. Sci Total Environ. 2006; 355: 78-89.
  • Whitehead SA, Rice S. Endocrine-disrupting chemicals as modulators of sex steroid synthesis. Best Pract Res Clin Endocrinol Metab. 2006; 20:45-61.
  • Roy JR, Chakraborty S, Chakraborty TR. Estrogen-like endocrine disrupting chemicals affecting puberty in humans-a review. Med Sci Monit. 2009; 15: RA137-145.
  • Cassidy RA, Natarajan S, Vaughan GM. The link between the insecticide heptachlor epoxide, estradiol, and breast cancer. Breast Cancer Res Treat. 2005; 90: 55-64.
  • Shakeel MK, George PS, Jose J, Jose J, Mathew A. Pesticides and breast cancer risk: a comparison between developed and developing countries. Asian Pac J Cancer Prev. 2010; 11: 173-180.
  • Ibarluzea Jm Jm, Fernández MF, Santa-Marina L, Olea-Serrano MF, Rivas AM, Aurrekoetxea JJ i wsp. Breast cancer risk and the combined effect of environmental estrogens. Cancer Causes Control. 2004; 15: 591-600.
  • Ociepa-Zawal M, Rubis B, Wawrzynczak D, Wachowiak R, Trzeciak WH. Accumulation of environmental estrogens in adipose tissue of breast cancer patients. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2010; 45: 305 312.
  • Xu X, Dailey AB, Talbott EO, Ilacqua VA, Kearney G, Asal NR. Associations of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in U.S. adults. Environ Health Perspect. 2010; 118: 60-66.
  • Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E i wsp. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol. 2012; 355: 201-207.
  • Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011; 127: 27-34.
  • Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE i wsp. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol. 2007; 24: 199-224.
  • Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005; 113: 391-395.
  • Wolstenholme JT, Rissman EF, Connelly JJ. The role of Bisphenol A in shaping the brain, epigenome and behavior. Horm Behav. 2011; 59: 296-305.
  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology. 1997; 138: 863 870.
  • Ben-Jonathan N, Steinmetz R. Xenoestrogens: the emerging story of bisphenol a. Trends Endocrinol Metab. 1998; 9: 124-128.
  • Czupryńska K, Wiszniewska B. Wpływ ksenoestrogenów na męski układ płciowy. Post Biol Kom 2007; 34: 317-333.
  • Mangochi P. Endocrine distrupting chemicals and human health: the plausibility of research results on DDT and reproductive health. Malawi Med J. 2010; 22: 42 45.
  • Watson CS, Bulayeva NN, Wozniak AL, Alyea RA. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids. 2007; 72: 124-134.
  • McKinlay R, Plant JA, Bell JN, Voulvoulis N. Endocrine disrupting pesticides: implications for risk assessment. Environ Int. 2008; 34: 168-183.
  • Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB i wsp. Study for Future Families Research Group. Semen quality in relation to biomarkers of pesticide exposure. Environ Health Perspect. 2003; 111: 1478-1484.
  • Longnecker MP, Klebanoff MA, Brock JW, Zhou H, Gray KA, Needham LL, Wilcox AJ. Maternal serum level of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and risk of cryptorchidism, hypospadias, and polythelia among male offspring. Am J Epidemiol. 2002; 155: 313-322.
  • Pierik FH, Burdorf A, Deddens JA, Juttmann RE, Weber RF. Maternal and paternal risk factors for cryptorchidism and hypospadias: a case-control study in newborn boys. Environ Health Perspect. 2004; 112: 1570-1576.
  • Hardell L, van Bavel B, Lindström G, Carlberg M, Dreifaldt AC, Wijkström H i wsp. Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environ Health Perspect. 2003; 111: 930-934.
  • Hardell L, Bavel B, Lindström G, Eriksson M, Carlberg M. In utero exposure to persistent organic pollutants in relation to testicular cancer risk. Int J Androl. 2006; 29: 228-234.
  • Prins GS. Endocrine disruptors and prostate cancer risk. Endocr Relat Cancer. 2008; 15: 649-656.

Document Type

paper

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-7038109e-d770-42f2-974f-5c6e2d29db5d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.