PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 108 | 224-228
Article title

Linearization of (second order operator)1/2

Content
Title variants
Languages of publication
EN
Abstracts
EN
We illustrate by means of the Pauli matrices how to linearize (second order operator)1/2 associated to the Weyl and Dirac equations. Besides, we exhibit the square root of the two dimensional Laplacian operator.
Year
Volume
108
Pages
224-228
Physical description
Contributors
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
References
  • [1] A. Cauchy, Mémoire sur les intégrales définies, Paris (1825).
  • [2] B. Riemann, Grundlagen für eine allgemeine theorie der functionen einer veränderlichen complexen grösse, Göttingen (1851).
  • [3] J. D’Alembert, Essai d’une nouvelle théorie de la résistance del fluides, Paris (1752) 316-361.
  • [4] L. Euler, Continuation des recherches sur la théorie du movement des fluides, Mém. Acad. Berlin 11 (1757).
  • [5] J. Lagrange, Solutions de différents problems du calcul integral, Miscellanea Taurinensia 3 (1766) 179-380.
  • [6] W. R. Hamilton, Theory of conjugate functions or algebraic couples, Trans. Roy. Irish Acad. 48 (1837) 293-422.
  • [7] A. Cauchy, Résumé des lecons données á l’Ecole Polytechnique sur les applications du calcul infinitésimal, Paris (1823).
  • [8] C. Lanczos, The tensor analytical relationships of Dirac’s equation, Zeits. für Physik 57 (1929) 447-473.
  • [9] B. E. Carvajal-Gámez, F. Gallegos-Funes, J. López-Bonilla, On the Fueter-Lanczos conditions, J. Vect. Rel. 4, No. 3 (2009) 137-141.
  • [10] W. F. Eberlein, Cauchy-Riemann operator, Am. J. Phys. 35, No. 1 (1967) 53.
  • [11] W. Pauli, Zur quantenmechanik des magnetischen electrons, Zeits. für Physik 43 (1927) 601-623.
  • [12] P. Jordan, E. Wigner, Über das paulische aquivalenzverbot, Zeits. für Physik 47 (1927) 631-651.
  • [13] A. Cayley, A memoir on the theory of matrices, London Phil. Trans. 148 (1858) 17-37.
  • [14] J. Sylvester, On quaternions, nonions and sedenions, Johns Hopkins Circ. 3 (1884) 7-9.
  • [15] C. Darwin, The electron as a vector wave, Proc. Roy. Soc. London A116 (1927) 227-253.
  • [16] H. Weyl, Electron and gravitation, Zeits. für Physik 56 (1929) 330-352.
  • [17] P. A. M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. London A117 (1928) 610-624 and A118 (1928) 351-361.
  • P. A. M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. London A118 (1928) 351-361.
  • [18] P. A. M. Dirac, Pretty Mathematics, Int. J. Theor. Phys. 21, No. 8-9 (1982) 603-605.
  • [19] B. L. van der Waerden, Group theory and quantum mechanics, Springer-Verlag, Berlin (1974).
  • [20] W. Greiner, Relativistic quantum mechanics, Springer-Verlag, Berlin (1990).
  • [21] J. López-Bonilla, L. Rosales-Roldán, A. Zúñiga-Segundo, Dirac matrices via quaternions, J. Sci. Res. 53 (2009) 253-255.
  • [22] P. Lam-Estrada, M. Maldonado, J. López-Bonilla, R. López-Vázquez, Transformations of Dirac spinor under boosts and 3-rotations, Prespacetime Journal 7, No. 1 (2016) 148-153.
  • [23] H. S. Kragh, The genesis of Dirac’s relativistic theory of electrons, Archive for History of Exact Sciences 24, No. 1 (1981) 31-67.
  • [24] H. S. Kragh, Relativity and quantum theory from Sommerfeld to Dirac, Ann. der Phys. 9, No. 11-12 (2000) 961-974.
  • [25] G. Farmelo (Editor), It must be beautiful: Great equations of modern science, Granta Books, London (2002).
  • [26] N. Hamdan, A. Chamaa, J. López-Bonilla, On the relativistic concept of the Dirac’s electron spin, Lat. Am. J. Phys. Educ. 2, No. 1 (2008) 65-70.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-700f80f9-7277-4f51-bdd6-afcb7a820dc6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.