Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 23 | 5-24

Article title

APPLICATIONS OF CHITOSAN–GRAPHENE OXIDE NANOCOMPOSITES IN MEDICAL SCIENCE: A REVIEW

Content

Title variants

Languages of publication

EN

Abstracts

EN
Combinations of biopolymers with nanostructured carbon materials have been the subject of interest of many scientists in recent years. Particularly significant are nanocomposites made of chitosan, which is a linear aminopolysaccharide obtained in the process of deacetylation of chitin, and graphene oxide (GO). These systems, due to the atypical properties of both components such as non-toxicity, biocompatibility with human tissues and organs as well as bacteriostaticity, are characterised by a wide range of biomedical applications. They may be used in emergency medicine as dressing materials which accelerate wound healing, as well as carriers of drugs/genes and biological macromolecules, for example proteins, peptides and nucleic acids. In addition, CS-GO systems can potentially be used in regenerative medicine as scaffolds for cell culture. For this reason, the current publication presents the possibilities of the application of chitosan–graphene oxide nanocomposites in medicine considering the characteristics of the system components.

Contributors

  • Faculty of Process and Environmental Engineering Lodz University of Technology
  • Faculty of Process and Environmental Engineering Lodz University of Technology
  • Faculty of Process and Environmental Engineering Lodz University of Technology

References

  • [1] Wojnicz R.; (2011) Nanomedycyna jako fundament medycyny personalizowanej. Kardiologia Polska, 69 (10), 1107-1108.
  • [2] Freitas R.A.; (2005) What is nanomedicine? Nanomedicine: Nanotechnology, Biology, and Medicine, 1 (1), 2-9. DOI: 10.1016/j.nano.2004.11.003.
  • [3] Wiśniewski M., Rossochacka P., Werengowska-Ciećwierz K., Bielicka A., Terzyk A.P., Gauden P.A.; (2013) Medyczne aspekty nanostrukturalnych materiałów węglowych. Inżynieria i Ochrona Środowiska, 16 (2), 255-261.
  • [4] Pokhrel S., Yadav P.N., Adhikari R.; (2015) Applications of Chitin and Chitosan in Industry and Medical Science: A Review. Nepal Journal of Science and Technology, 16 (1), 99-104. DOI:10.3126/njst.v16i1.14363.
  • [5] Rinaudo M.; (2006) Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31 (7), 603-632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • [6] Modrzejewska Z.; (2011) Formy chitozanowe do zastosowań w inżynierii biomedycznej. Inżynieria i Aparatura Chemiczna, 50 (5), 74-75.
  • [7] Zhao Y., Park R-D., Muzzarelli R.A.A.; (2010) Chitin Deacetylases: Properties and Applications. Marine Drugs, 8 (1), 24-46. DOI: 10.3390/md8010024.
  • [8] Periayah M.H., Halim A.S., Saad A.Z.M.; (2016) Chitosan: A Promising Marine Polysaccharide for Biomedical Research. Pharmacognosy Review, 10 (19), 39-42. DOI: 10.4103/0973-7847.176545.
  • [9] Struszczyk M.H.; (2002) Chitin and Chitosan. Part I. Properties and Production. Polimery, 47 (5), 316-325.
  • [10] Muzzarelli R.A.A.; (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 76, 167-182. DOI: 10.1016/j.carbpol.2008.11.002.
  • [11] Pighinelli L., Kucharska M.; (2013) Chitosan – hydroxyapatite composites. Carbohydrate Polymers, 93 (1), 256-262. DOI: 10.1016/j.carbpol.2012.06.004.
  • [12] Ray S.D.; (2011) Potential aspects of chitosan as pharmaceutic. Acta poloniae pharmaceutica, 68 (5), 619-622.
  • [13] Bokura H., Kobayashi S.; (2003) Chitosan decreases total cholesterol in women: a randomized, double-blind, placebo-controlled trial. European Journal of Clinical Nutrition, 57 (5), 721-725. DOI:10.1038/sj.ejcn.1601603.
  • [14] Croisier F., Jérôme C.; (2013) Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49 (4), 780-792. DOI: 10.1016/j.eurpolymj.2012.12.009.
  • [15] Geim A.K., Novoselov K.S..; (2007) The rise of graphene. Nature Materials, 6, 183-191. DOI:10.1038/nmat1849.
  • [16] Yang Y., Asiri A.M., Tang Z., Du D., Lin Y.; (2013) Graphene based materials for biomedical applications. Materials Today, 16 (10), 365-373. DOI: 10.1016/j.mattod.2013.09.004.
  • [17] Skoda M., Dudek I., Jarosz A., Szukiewicz D.; (2014) Graphene: One Material, Many Possibilities – Application Difficulties in Biological Systems. Journal of Nanomaterials, 1-11. DOI: 10.1155/2014/890246.
  • [18] Chatterjee N., Eom H.J., Chi J.; (2014) A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials, 35 (4), 1109-1127. DOI:10.1016/j.biomaterials.2013.09.108.
  • [19] Malhotra B.D., Srivastava S., Augustine S.; (2015) Biosensors for Food Toxin Detection: Carbon Nanotubes and Graphene. Materials Research Society Symposia Proceedings, 1725. DOI:10.1557/opl.2015.165.
  • [20] Sohail M., Saleem M., Ullah S., Saeed N., Afridi A., Khan M., Arif M.; (2017) Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications. Modern Electronic Materials, 3 (3), 110-116. DOI: 10.1016/j.moem.2017.07.002.
  • [21] Jung A.; (2014) Nanocząstki w zastosowaniach medycznych – kierunek przyszłości? Pediatria i Medycyna Rodzinna, 10 (2), 104-110. DOI: 10.15557/PiMR.2014.0015.
  • [22] Zhou T., Zhou X., Xing D.; (2014) Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials, 35 (13), 4185-4194. DOI: 10.1016/j.biomaterials.2014.01.044.
  • [23] Lu Y.J., Yang H.W., Hung S.C., Huang C.Y., Li S.M., Ma C.C., Chen P.Y., Tsai H.C., Wei K.C., Chen J.P.; (2012) Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. International Journal of Nanomedicine, 7, 1737-1747. DOI: 10.2147/IJN.S29376.
  • [24] Zhang J., Zhang F., Yang H., Huang X., Liu H., Zhang J., Guo S.; (2010) Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir, 26 (9), 6083-6085. DOI: 10.1021/la904014z.
  • [25] Sundar K., Harikarthick V., Karthika V.S., Ravindran A.; (2014) Preparation of Chitosan-Graphene Oxide Nanocomposite and Evaluation of Its Antimicrobial Activity. Journal of Bionanoscince, 8 (3), 207-212. DOI: 10.1166/jbns.2014.1223.
  • [26] Marta B., Potara M., Iliut M., Jakab E., Radu T., Imre-Lucaci F., Katona G., Popescu O., Astilean S.; (2015) Designing chitosan-silver nanoparticles-graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus. Colloids +and Surfaces A: Physiochemical and Engineering Aspects, 487, 113-120. DOI: 10.1016/j.colsurfa.2015.09.046.
  • [27] Mahmoudi N., Ostadhossin F., Simchi A.; (2015) Physicochemical and antibacterial properties of chitosan‐polyvinylpyrrolidone films containing self‐organized graphene oxide nanolayers. Journal of Applied Polymer Science, 133 (11), 43194 (1-8). DOI: doi.org/10.1002/app.43194.
  • [28] Konwar A., Kalita S., Kotoky J., Chowdhury D.; (2016) Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm. ACS Applied Materials & Interfaces, 8 (32), 20625-20634. DOI: 10.1021/acsami.6b07510.
  • [29] Li P., Gao Y., Sun Z., Chang D., Gao G., Dong A.; (2016) Synthesis, Characterization, and Bactericidal Evaluation of Chitosan/Guanidine Functionalized Graphene Oxide Composites. Molecules, 22 (1), 1-15. DOI: 10.3390/molecules22010012.
  • [30] Chowdhuri A.R., Tripathy S., Chandra S., Roy S., Suhu S.K.; (2015) A ZnO decorated chitosan-graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Advances, 5, 49420-49428. DOI:10.1039/C5RA05393E.
  • [31] Rana V.K., Choi M.-C., Kong J.-Y., Kim G.Y., Kim M.J., Kim S.-H., Mishra S., Singh R.P., Ha C.-S.; (2011) Synthesis and Drug-Delivery Behavior of Chitosan-Functionalized Graphene Oxide Hybrid Nanosheets. Macromolecular Materials and Engineering, 296 (2), 131-140. DOI:10.1002/mame.201000307.
  • [32] Justin R., Chen B.; (2014) Characterisation and drug release performance of biodegradable chitosan – graphene oxide nanocomposites. Carbohydrate Polymers, 103, 70-80. DOI:10.1016/j.carbpol.2013.12.012.
  • [33] Justin R., Chen B.; (2014) Strong and conductive chitosan-reducted graphene oxide nanocomposites for transdermal drug delivery. Journal of Materials Chemistry B, 2, 3759-3770. DOI: 10.1039/c4tb00390j.
  • [34] Li Y., Jiang L.; (2016) Preparation of graphene oxide-chitosan nanocapsules and their applications as carriers for drug delivery. RSC Advances, 6, 104522-104528. DOI: 10.1039/c6ra24401g.
  • [35] Chen K., Ling Y., Cao C., Li X., Chen X., Wang X.; (2016) Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Materials Science and Engineering C, 69, 1222-1228. DOI: 10.1016/j.msec.2016.08.036.
  • [36] Shi Y., Xiong Z., Lu X., Yan X., Cai X., Xue W.; (2016) Novel carboxymethyl chitosan-graphene oxide hybrid particles for drug delivery. Journal of Materials Science: Materials in Medicine, 27 (11). DOI:10.1007/s10856-016-5774-6.
  • [37] Ardeshirzadeh B., Anaraki N.A., Irani M., Rad L.R., Shamshiri S.; (2015) Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds. Materials Science and Engineering: C, 48,384-390. DOI: 10.1016/j.msec.2014.12.039.
  • [38] Samadi S., Moradkhani M., Beheshti H., Irani M., Aliabadi M.; (2018) Fabrications of hitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. International Journal of Biological Macromolecules, 110, 416-424. DOI: 10.1016/j.ijbiomac.2017.08.048.
  • [39] Wang C., Zhang Z., Chen B., Gu L., Li Y., Yu S.; (2018) Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. Journal of Colloid and Interface Science, 516, 332-341. DOI: 10.1016/j.jcis.2018.01.073.
  • [40] Zhao X., Wei Z., Zhao Z., Miao Y., Qiu Y., Yang W., Jia X., Liu Z., Hou H.; (2018) Design and Development of Graphene Oxide Nanoparticle/Chitosan Hybrids Showing pH-Sensitive Surface Charge-Reversible Ability for Efficient Intracellular Doxorubicin Delivery. ACS Applied Materials & Interfaces, 10 (7), 6608-6617. DOI: 10.1021/acsami.7b16910.
  • [41] Emadi F., Amini A., Gholami A., Ghasemi Y.; (2017) Functionalized Graphene Oxide with Chitosan for Protein Nanocarriers to Protect against Enzymatic Cleavage and Retain Collagenase Activity. Scientific Reports, 7, 1-13. DOI: 10.1038/srep42258.
  • [42] Yan T., Zhang H., Huang D., Feng S., Fujita M., Gao X.-D.; (2017) Chitosan-Functionalized Graphene Oxide as a Potential Immunoadjuvant. Nanomaterials 7 (3). DOI: 10.3390/nano7030059.
  • [43] Yang Z.R., Wang H.F., Zhao J., Peng Y.Y., Wang J., Guinn B.A., Huang L.Q.; (2007) Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Therapy, 14 (7), 599-615. DOI: 10.1038/sj.cgt.7701054.
  • [44] Naldini L., Blömer U., Gallay P., Ory D., Mulligan R., Gage F.H., Verma I.M., Trono D.; (1996) In vivo gene delivety and stable transduction of nondividing cells by a lentiviral vector. Science, 272 (5259), 263-367. DOI:10.1126/science.272.5259.263.
  • [45] Bao H., Pan Y., Ping Y., Sahoo N.G., Wu T., Li L., Li J., Gan L.H.; (2011) Chitosan-functionalized graphene oxide as a nanocarriers for drug and gene delivery. Small, 7 (11), 1569-1578. DOI:10.1002/smll.201100191.
  • [46] Hu H., Tang C., Yin C.; (2014) Folate conjugated trimethyl chitosan/graphene oxide nanocomplexes as potential carriers for drug and gene delivery. Materials Letters, 125, 82-85. DOI:10.1016/j.matlet.2014.03.133.
  • [47] Sobolewski P., Goszczyńska A., Aleksandrzak M., Urbaś K., Derkowska J., Bartoszewska A., Podolski J., Mijowska E., El Fray M.; (2017) A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite. Beilstein Journal of Nanotechnology, 8, 1508-1514. DOI: 10.3762/bjnano.8.151.
  • [48] Kaźnica A., Joachimiak R., Drewa T., Rawo T., Deszczyński J.; (2007) Nowe trendy w inżynierii tkankowej. Artroskopia i Chirurgia Stawów, 3 (3), 11-16.
  • [49] Khademhosseini A., Vacanti J.P., Langer R.; (2009) Progress in tissue engineering. Scientific American, 300 (5), 64-71. DOI: 10.1038/scientificamerican0509-64.
  • [50] Freed L.E., Vunjak-Novakovic G., Biron R.J., Eagles D.B., Lesnoy D.C., Barlow S.K., Langer R.; (1994) Biodegradable polymer scaffolds for tissue engineering. Bio/Technology, 12 (7), 689-693. DOI:10.1038/nbt0794-689.
  • [51] Tamayol A., Akbari M., Annabi N., Paul A., Khademhosseini A., Juncker D.; (2013) Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology Advances, 31 (5), 669-687. DOI:10.1016/j.biotechadv.2012.11.007.
  • [52] Hubbell J.A.; (1995) Biomaterials in Tissue Engineering. Bio/Technology, 13, 565-576. DOI:10.1038/nbt0695-565.
  • [53] Lutolf M.P., Hubbell J.A.; (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 23, 47-55. DOI: 10.1038/nbt1055.
  • [54] Li M., Wang Y., Liu Q., Li Q., Cheng Y., Zheng Y., Xi T., Wei S.; (2013) In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. Journal of Materials Chemistry B, 1 (4), 475-484. DOI: 10.1039/c2tb00053a.
  • [55] Depan D., Pesacreta T.C., Misra R.D.K.; (2014) The synergistic effect of a hybrid graphene oxide-chitosan system and biomimetic mineralization on osteoblast functions. Biomaterials Science, 2, 264-274. DOI: 10.1039/C3BM60192G.
  • [56] Dinescu S., Ionita M., Pandele A.M., Galateanu B., Iovu H., Ardelean A., Costache M., Hermenean A.; (2014) In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering. Bio-Medical Materials and Engineering, 24, 2249-2256. DOI: 10.3233/BME-141037.
  • [57] Dinescu S., Ignat S., Predoiu L., Hermenean A., Ionita M., Mladenov M., Costache M.; (2017) Graphene oxide improves chitosan-based biomaterials with applications in bone tissue engineering. Romanian Biotechnological Letters, 22 (6), 13108-13115.
  • [58] Saravanan S., Chawla A., Vairamani M., Sastry T.P., Subramanian K.S., Selvamurugan N.; (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 104, 1975-1985. DOI: 10.1016/j.ijbiomac.2017.01.034.
  • [59] Hermenean A., Codreanu A., Herman H., Balta C., Rosu M., Mihali C.V., Ivan A., Dinescu S., Ionita M., Costache M.; (2017) Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects. Scientific Reports, 7. DOI: 10.1038/s41598-017-16599-5.
  • [60] Pandele A.M., Ionita M., Crica L., Vasile E., Iovu H.; (2017) Novel Chitosan-poly(vinyl alcohol)/graphene oxide biocomposites 3D porous scaffolds. Composites Part B, 126, 81-87. DOI: 10.1016/j.compositesb.2017.06.010.
  • [61] Sivashankari P.R., Moorthi A., Abudhahir K.M., Prabaharan M.; (2018) Preparation and characterization of three-dimensional scaffolds based on hydroxypropyl chitosan-graft-graphene oxide. International Journal of Biological Macromolecules, 110, 522-530. DOI: 10.1016/j.ijbiomac.2017.11.033.
  • [62] Moina C., Ybarra G.; (2012) Fundamentals and Applications of Immunosensors. In: Chiu N. (ed), Advances in Immunoassay Technology, InTech, London, 65-80. DOI:10.5772/36947.
  • [63] Felix F.S., Angnes L.; (2018) Electrochemical immunosensors – A powerful tool for analytical applications. Biosensors and Bioelectronics, 102, 470-478. DOI: 10.1016/j.bios.2017.11.029.
  • [64] Zhang Y., Wei Q.; (2016) The role of nanomaterials in electroanalytical biosensors: A mini review. Journal of Electroanalytical Chemistry, 781, 401-409. DOI: 10.1016/j.jelechem.2016.09.011.
  • [65] Lan L., Yao Y., Ping J., Ying Y.; (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosensors and Bioelectronics, 91, 504-514. DOI: 10.1016/j.bios.2017.01.007.
  • [66] Hu L., Zheng J., Zhao K., Deng A., Li J.; (2018) An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac. Biosensors and Bioelectronics, 101, 260-267. DOI:10.1016/j.bios.2017.10.043.
  • [67] Antunes J., Justino C., Pinto da Costa J., Cardoso S., Duarte A.S., Rocha-Santos T.; (2018) Graphene immunosensors for okadaic acid detection in seawater. Microchemical Journal, 138, 465-471. DOI: 10.1016/j.microc.2018.01.041.
  • [68] Dong X-X., Yuan L-P., Liu Y-X., Wu M-F., Liu B., Sun Y-M., Shen Y-D., Xu Z-L.; (2017) Development of a progesterone immunosensor based on thionine-graphene oxide composites platforms: Improvement by biotin-streptavidin-amplified system. Talanta, 170, 502-508. DOI: 10.1016/j.talanta.2017.04.054.
  • [69] Sun B., Gou Y., Ma Y., Zheng X., Bai R., Ahmed Abdelmoaty A.A., Hu F.; (2017) Investigate electrochemical immunosensor of cortisol based on gold nanoparticles/magnetic functionalized reduced graphene oxide. Biosensors and Bioelectronics, 88, 55-62. DOI: 10.1016/j.bios.2016.07.047.
  • [70] Li J., Liu S., Yu J., Lian W., Cui M., Xu W., Huang J.; (2013) Electrochemical immunosensor based on graphene-polyaniline composites and carboxylated graphene oxide for estradiol detection. Sensors and Actuators B: Chemical, 188, 99-105. DOI: 10.1016/j.snb.2013.06.082.
  • [71] Nie G., Wang Y., Tang Y., Zhao D., Guo Q.; (2018) A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosensors and Bioelectronics, 101, 123-128. DOI:10.1016/j.bios.2017.10.021.
  • [72] Wang R., Feng J-J., Xue Y., Wu L., Wang A-J.; (2018) A label-free electrochemical immunosensor based on AgPt nanorings supported on reduced graphene oxide for ultrasensitive abalysis of tumor marker. Sensors and Actuators B: Chemical, 254, 1174-1181. DOI: 10.1016/j.snb.2017.08.009.
  • [73] Rauf S., Mishra G.K., Azhar J., Mishra R.K., Goud K.Y., Nawaz M.A.H., Marty J.L., Hayat A.; (2018) Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Analytical Biochemistry, 545, 13-19. DOI: 10.1016/j.ab.2018.01.007.
  • [74] Liu L., Tian L., Zhao G., Huang Y., Wei Q., Cao W.; (2017) Ultrasensitive electrochemical immunosensor for alpha fetoprotein detection based on platinum nanoparticles anchored on cobalt oxide/graphene nanosheets for signal amplification. Analytica Chimica Acta, 986, 138-144. DOI:10.1016/j.aca.2017.07.025.
  • [75] Khoshroo A., Mazloum-Ardakani M., Forat-Yazdi M.; (2018) Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sensors and Actuators B: Chemical, 255, Part 1, 580-587. DOI:10.1016/j.snb.2017.08.114.
  • [76] Pal M., Khan R.; (2017) Graphene oxide layer decorated gold nanoparticles based immunosensor for the detection of prostate cancer risk factor. Analytical Biochemistry, 536, 51-58. DOI:10.1016/j.ab.2017.08.001.
  • [77] Veerapandian M., Hunter R., Neethirajan S.; (2016) Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen. Talanta, 155, 250-257. DOI: 10.1016/j.talanta.2016.04.047.
  • [78] Hwang Y.H., Jeon E.A., Lee D.Y.; (2018) Cell surface-camouflaged graphene oxide immunosensor for identifying immune reactions. Journal of Industrial and Engineering Chemistry, 59, 28-34. DOI:10.1016/j.jiec.2017.10.002.
  • [79] Kavosi B., Salimi A., Hallaj R., Moradi F.; (2015) Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosensors and Bioelectronics, 74, 915-923. DOI: 10.1016/j.bios.2015.07.064.
  • [80] Afkhami A., Hashemi P., Bagheri H., Salimian J., Ahmadi A., Madrakian T.; (2017) Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosensors and Bioelectronics, 93, 124-131. DOI:10.1016/j.bios.2016.09.059.

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-6f0ce28d-4fc7-4406-8277-710e2da8f6cc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.