PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 1 | 1-9
Article title

Total alkaline phosphatase activity (ALP-EC 3.1.3.1) of water in the River Odra estuary (North-West Poland)

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Odra estuary includes, as its major part, the brackish Szczecin Lagoon. This consists of two parts: the Kleines Haff (located in Germany) and the Wielki Zalew located in Poland. The Lagoon receives the River Odra water supplied from the south; prior to being discharged into the Lagoon, part of the Odra flow passes through Lake Dąbie. In its northern part, the Lagoon connects – via three straits (the Peene, Świna and Dziwna) - with the Pomeranian Bay, a Baltic embayment. Water in the lakes of the River Odra estuary were the subjects of a five-year study (2008-2012). Total alkaline phosphatase activity was determined seven times a year in these environments. The zonal study demonstrated that the top sub littoral layer (1 m) featured the highest alkaline phosphatase activity among all the analyzed zones. A study of seasonal fluctuations showed that a maximum total alkaline phosphatase activity occurred in spring (May) and summer (July, August). Basing on this parameter, no increase in eutrophication process in the River Odra estuary was determined in the course of a 5-year study.
Contributors
References
  • [1] Cao X., Song Ch., Zhou Y., 2009. Limitations of using extracellular alkaline phosphatase activities as a general indicator for describing P deficiency of phytoplankton in Chinese shallow lakes. J Appl Phycol DOI:10.1007/s108110099422-0
  • [2] Chróst RJ, Siuda W, Halemejko GZ, 1984. Longterm studies on alkaline phosphatase activity (APA) in a lake with fishaquaculture in relation to lake eutrophication and phosphorus cycle. Arch Hydrobiol 70, 1-32
  • [3] Furczak J. (2000). Acta Agrophysica, 4(2), 291-299.
  • [4] Furczak J., Bielińska E. J. (2001). Acta Agrophysica, 56, 125-135.
  • [5] Górniak A. (1993). Composition of the organic matter in lakes bottom sediments. Procc. IHSS Ins. Meeting, Barii, ed. Senesi N., Miano T.M., Elsevier Publisher, Amsterdam.
  • [6] Jansson M., Olsson H., Pettersson K. (1988). Hydrobiol. 170, 157-175
  • [7] Jones J.G. (1972) J. Ecol., 60, 777-791.
  • [8] Kobari H., Taga N. (1979). Deep-Sea Res., 26A, 799-808.
  • [9] Koch M.S., Kletou D.C., Tursi R. 2009. Alkaline phosphatase activity of water column fractions and seagrass in a tropical carbonate estuary, Florida Bay. Estuarine, Coastal and Shelf Science, 1-11.
  • [10] Korniłłowicz T. (1994). Acta Mycol., 29, 23-31, 159-168.
  • [11] Tabatabai M.A., Bremner J.M. (1969). Soil Biol. Biochem., 1, 301-307.
  • [12] Cao X, Štrojsová A, Znachor P, Zapomělová E, Liu G, Vrba J, Zhou Y, 2005. Detection of extracellular phosphatases in natural spring phytoplankton of a shallow eutrophic lake (Donghu, China). Eur J Phycol 40: 251-285 doi:10.1080/09670260500192760
  • [13] Feuillade J, Feuillade M, Blanc P, 1990. Alkaline phosphatase activity fluctuations and associated factors in a eutrophic lake dominated by Oscillatoria rubescens. Hydrobiologia 207:233–240 doi:10.1007/BF00041461
  • [14] Gage MA, Gorham E, 1985. Alkaline phosphatase activity as an index of phosphorus status of phytoplankton in Minnesota lakes. Freshw Biol 15: 227-233 doi:10.1111/j.1365-2427.1985.tb00195.x
  • [15] Gillor O, Hadas O, Post AF, Belkin S, 2002. Phosphorus bioavailability monitoring by a bioluminescent cyanobacterial sensor strain. J Phycol 38: 107-115 doi:10.1046/j.1529-8817.2002.01069.x
  • [16] He Z.L., Alva A.K., Li Y.C., Calvert D.V., Banks D.J., 1999. Sorptiondesorption and solution concentration of phosphorus in a fertilized sandy soil. Journal of Environmental Quality 28, 1804-1810.
  • [17] Hedley M.J., Stewart J.W.B., Chauhan B.S., 1982. Changes in inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal 46, 970-976.
  • [18] Hino S, 1988. Fluctuation of algal alkaline phosphatase activity and the possible mechanisms of hydrolysis of dissolved organic phosphorus in Lake Barato. Hydrobiologia 157: 77-84. doi:10.1007/BF00008812
  • [19] Jamet D, Amblard C, Devaux J, 1997. Seasonal changes in alkaline phosphatase activity of bacteria and microalgae in Lake Pavin (Massif Central, France). Hydrobiologia 347: 185-195. doi:10.1023/A:1003044008455
  • [20] Jamet D, Amblard C, Devaux J, 2001. Size-fractionated alkaline phosphatase activity in the hypereutrophic Villerest reservoir (Roanne, France). Water Environ Res 73: 132-141. doi:10.2175/ 106143001X138787
  • [21] Jones JG, 1972. Studies on freshwater bacteria: association with algae and alkaline phosphatase activity. Ecol 60: 59-75. doi:10.2307/2258040
  • [22] Krystyna K, 1997. Eutrophication processes in a shallow, macrophyte dominated lake - alkaline-phosphatase activity in Lake Łuknajno (Poland). Hydrobiologia 342-343: 395-399 doi:10.1023/A:1017051726211
  • [23] Mhamdia BA, Azzouzib A, Elloumic J, Ayadic H, Mhamdia MA, Aleya L, 2007. Exchange potentials of phosphorus between sediments and water coupled to alkaline phosphatase activity and environmental factors in an oligo-mesotrophic reservoir. C R Biol 330:419–428 doi:10.1016/j.crvi.2007.02.009
  • [24] Nedoma J, Garcia JC, Comerma M, Simek K, Armengol J, 2006, Extracellular phosphatases in a Mediterranean reservoir: seasonal, spatial and kinetic heterogeneity. Freshw Biol 51: 1264-1276. doi:10.1111/j.1365-2427.2006.01566.x
  • [25] Newman S, Mccormick PV, Backus J, 2003. Phosphatase activity as an early warning indicator of wetland eutrophication: problems and prospects. J Appl Phycol 15: 45-59. doi:10.1023/A:1022971204435
  • [26] Nicholson D, Dyhrman S, Chavez F, Paytan A, 2006. Alkaline phosphatase activity in the phytoplankton communities of Monterey Bay and San Francisco Bay. Limnol Oceanogr 51: 874-883
  • [27] Olsson H, 1990. Phosphatase activity in relation to phytoplankton composition and pH in Swedish lakes. Freshw Biol 23: 353-362. doi:10.1111/j.13652427.1990.tb00277.x
  • [28] Pettersson K, 1985. The availability of phosphorus and the species composition of the spring phytoplankton in Lake Erken. Int Rev Gesamten Hydrobiol Hydrograph 70: 527–546. doi:10.1002/ iroh.19850700407
  • [29] Pick FR, 1987. Interpretations of alkaline phosphatase activity in Lake Ontario. Can J Fish Aquat Sci 44: 2087-2094. doi:10.1139/f87-258
  • [30] Rengefors K, Pettersson K, Blenckner T, Anderson DM, 2001. Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. J Plankton Res 23: 435-443 doi:10.1093/plankt/23.4.435
  • [31] Rengefors K, Ruttenberg KC, Haupert CL, Taylor C, Howes BL, 2003. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnol Oceanogr 48: 1167-1175
  • [32] Sebastian M, Aristegui J, Montero MF, Niell FX, 2004. Kinetics of alkaline phosphatase activity, and effect of phosphate enrichment: a case study in the NWAfrican upwelling region. Mar Ecol Prog Ser 270: 1-13. doi:10.3354/meps270001
  • [33] Smith RIH, Kalff J, 1981. The effect of phosphorus limitation of algal growth rate: evidence from alkaline phosphatase. Can J Fish Aquat Sci 38: 1421-1427. doi:10.1139/f81-188
  • [34] Spijkerman E, Coesel PFM, 1998. Alkaline phosphatase activity in two planktonic desmid species and the possible role of an extracellular envelope. Freshw Biol 39: 503-513. doi:10.1046/j.1365-2427.1998.00299.x
  • [35] Štrojsová A, Vrba J, Nedoma J, Komárková J, Znachor P, 2003. Seasonal study on expression of extracellular phosphatases in the phytoplankton of an eutrophic reservoir. Eur J Phycol 38: 295-306 doi:10.1080/09670260310001612628
  • [36] Štrojsová A, Vrba J, Nedoma J, Šimek K, 2005. Extracellular phosphatase activity of freshwater phytoplankton exposed to different in situ phosphorus concentrations. Mar Freshw Res 56: 417-424 doi:10.1071/MF04283
  • [37] Taga N, Kobori H, 1978. Phosphatase activity in eutrophic Tokyo Bay. J. Mar Biol (Berl) 49: 223-229. doi:10.1007/BF00391134
  • [38] Vrba J, Komárková J, Vyhnálek V, 1993. Enhanced activity of alkaline phosphatases-phytoplankton response to epilimnetic phosphorus depletion. Water Sci Technol 28: 15-24
  • [39] Yu S., Hea Z.L., Stoffellaa P.J., Calverta D.V., Yanga X.E., Banksa D.J., Baligar V.C., 2006. Surface runoff phosphorus (P) loss in relation to phosphatase activity and soil P fractions in Florida sandy soils under citrus production. Soil Biology & Biochemistry 38, 619-628.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-6e567af1-683b-491d-82da-e930135929cc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.