PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 151 | 1-15
Article title

Multiplicative inversions involving real zero and neverending ascending infinity in the multispatial framework of paired dual reciprocal spaces

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Inverses of complex numbers and of analytic functions are composites of mixed type for they are multiplicative inverses (i.e. reciprocals) of the modulus/magnitude combined with additive reverses of the argument/angle. Hence, the mixed inverses in the complex domain ℂ are not really reciprocals and therefore their lack of truly multiplicative reciprocity was a contributing reason that spurred the – unnecessary though still ongoing – prohibition of division by zero which is the natural reciprocal of the neverending ascending real infinity. Truly reciprocal algebraic operations are presented (via multiplicative algebraic inversions) by few examples within the new multispatial framework in terms of their abstract algebraic representations subscripted by the native algebraic bases of the mutually paired dual reciprocal (even though algebraic) spaces in which the inversive operations are performed.
Discipline
Year
Volume
151
Pages
1-15
Physical description
Contributors
author
  • Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA
References
  • [1] Czajko J. Multiplicative counterpart of the essentially additive Borsuk-Ulam theorem as the pivoting gateway to equidimensional paired dual reciprocal spaces. World Scientific News 150 (2020) 118-131
  • [2] Czajko J. Unrestricted division by zero as multiplication by the – reciprocal to zero – infinity. World Scientific News 145 (2020) 180-197
  • [3] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(4) (2018) 171-197
  • [4] Czajko J. Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace. World Scientific News 94(4) (2018) 190-216
  • [5] Czajko J. Quaternionic operational infinity. World Scientific News 149 (2020) 23-35
  • [6] Czajko J. Finegrained 3D differential operators hint at the inevitability of their dual reciprocal portrayals. World Scientific News 132 (2019) 98-120
  • [7] Czajko J. New product differentiation rule for paired scalar reciprocal functions. World Scientific News 144 (2020) 358-371
  • [8] Czajko J. Dual reciprocal scalar potentials paired via differential operators in Frenet frames make the operators to act simultaneously in each of two paired 3D reciprocal spaces. World Scientific News 137 (2019) 96-118
  • [9] Czajko J. Pairing of infinitesimal descending complex singularity with infinitely ascending, real domain singularity. World Scientific News 144 (2020) 56-69
  • [10] Czajko J. Complexification of operational infinity. World Scientific News 148 (2020) 60-71
  • [11] Coffman A. Unfolding CR singularities. Providence, RI: AMS, 2009, p.10ff.
  • [12] Taubes C.H. Differential geometry. Bundles, connections, metrics and curvature. Oxford: Oxford Univ. Press, 2012, pp.60f,62f.
  • [13] Jones G.A. & Singerman D. Complex functions. An algebraic and geometric viewpoint. Cambridge: Cambridge Univ. Press, 1987, p.4.
  • [14] W. Rudin, Real and complex analysis. New Delhi: McGraw-Hill, 2006, p.18f.
  • [15] Maurin K. Analysis II: Integration, distributions, holomorphic functions, tensor and harmonic analysis. Dordrecht: Reidel, 1980, p.65.
  • [16] Cheng E. Beyond infinity. An expedition to the outer limits of mathematics. New York: Basic Books, 2017, p.13ff.
  • [17] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. Int. Lett. Chem. Phys. Astron. 50 (2015) 117-142
  • [18] Czajko J. Flawed fundamentals of tensor calculus. World Scientific News 149 (2020) 140-165
  • [19] Pennisi L.L., Gordon L.I. & Lasher S. Elements of complex variables. New York: Holt, Rinehart and Winston, 1963, p.305ff.
  • [20] Arfken G.B. & Weber H.J. Mathematical methods for physicists. Amsterdam: Elsevier, 2005, p.916.
  • [21] McQuarrie D.A. Mathematical methods for scientists and engineers. Sausalito, CA: University Science Books, 2003, p.956.
  • [22] Matthews J.H. & Howell R.W. Complex analysis for mathematics and engineering. New Delhi: Jones and Bartlett, 2011, p.90ff.
  • [23] Nevanlinna R. & Paatero V. Introduction to complex analysis. Providence, RI: AMS Chelsea Publishing, 2007, p.45.
  • [24] Wilde I.F. Lecture notes on complex analysis. London: Imperial College Press, 2006, p.209.
  • [25] Paliouras J.D. & Meadows D.S. Complex variables for scientists and engineers. Mineola, NY: Dover, 2014, p.353ff.
  • [26] Howie J.M. Complex analysis. London: Springer, 2003, p.25.
  • [27] Ponnusamy S. & Silverman H. Complex variables with applications. Boston: Birkhäuser, 2006, p.77f.
  • [28] Kreyszig E. Advanced engineering mathematics. New York: Wiley, 1999, p.692.
  • [29] Zill D.G. & Shanahan P.D. A first course in complex analysis with applications. Boston: Jones and Bartlett Publishers, 2009, p.90f.
  • [30] Needham T. Visual Complex Analysis. Oxford: Clarendon Press, 2001, p.124.
  • [31] Polya G. & Latta G. Complex variables. New York: Wiley, 1974, p.62.
  • [32] Silverman R.A. Complex analysis with applications. New York: Dover, 1984, p.9f.
  • [33] Hille E. Analytic Function Theory II. Boston: Ginn & Co., 1962, p.175ff.
  • [34] Nehari Z. Conformal mapping. New York: Dover, 1975, p.74f.
  • [35] Jain R.K. & Iyengar S.R.K. Advanced engineering mathematics. Oxford: Alpha Science, 2007, p.10.16.
  • [36] Biswal P.C. Complex analysis. Delhi: PHI Learning, 2015, p.76f.
  • [37] Bell S.R. The Cauchy transform, potential theory, and conformal mapping. Boca Raton, FL: CRC Press, 1992, p.40.
  • [38] Hille E. Analytic Function Theory I. Boston: Ginn & Co., 1959, p.86ff.
  • [39] Kyrala A. Applied functions of a complex variable. New York: Wiley, 1972, p.103.
  • [40] Miller K.S. Advanced Calculus. New York: Harper & Brothers Publ., 1960, p.200.
  • [41] Chillingworth H.R. Complex variables. Oxford: Pergamon Press, 1973, p.126f.
  • [42] Boas M.L. Mathematical methods for the physical sciences. New Delhi: Wiley, 2017, p.702ff.
  • [43] Lang S. Complex analysis. New York: Springer, 2013, p.76.
  • [44] Greenleaf F.P. Introduction to complex variables. Philadelphia: Saunders, 1972, p.105.
  • [45] Levinson N. & Redheffer R.M. Complex variables. San Francisco: Holden-Day, 1970, pp.263,260.
  • [46] Stephenson G. Mathematical methods for science students. London: Longman, 1979, p.410.
  • [47] Freitag E. & Busam R. Complex analysis. Berlin: Springer, 2009, p.13.
  • [48] Beck M. et al. A first course in complex analysis. Ann Arbor, MI: Orthogonal Publishing, 2014, p.9f.
  • [49] Ash R.B. & Novinger W.P. Complex variables. Mineola, NY: Dover, 2004, p.2.
  • [50] Greene R.E. & Krantz S.G. Function theory of one complex variable. Providence, RI: AMS, 2002, p.2.
  • [51] Morrow J. & Kodaira K. Complex manifolds. New York: Holt, Rinehart and Winston, 1971, p.6.
  • [52] Heins M. Selected topics in the classical theory of functions of a complex variable. Mineola, NY: Dover, 2015, p.43.
  • [53] Hu P.-C. & Yang C.-C. Differentiable and complex dynamics of several variables. Dordrecht: Kluwer, 1999, p.39f.
  • [54] Deaux R. Introduction to the geometry of complex numbers. Minneola, NY: Dover, 2008, p.20ff.
  • [55] Fisher S.D. Complex variables. Mineola, NY: Dover, 1999, p.11.
  • [56] Vladimirov V.S. Methods of the theory of functions of many complex variables. Mineola, NY: Dover, 2007, p.49.
  • [57] Derrick W.R. Complex analysis and applications. Belmont, CA: Wadsworth, 1984, p.192f.
  • [58] Ahlfors L.V. Complex analysis. Chennai: McGraw-Hill, 2019, p.76f.
  • [59] Marsden J.E. Basic complex analysis. San Francisco: W.H. Freeman & Company, 1973, p.274f.
  • [60] Wunsch A.D. Complex variables with applications. Reading, MA: Addison-Wesley, 1994, p.22f.
  • [61] Silverman R.A. Introductory complex analysis. New York: Dover, 1972, p.71.
  • [62] Flanigan F.J. Complex variables. Harmonic and analytic functions. New York: Dover, 1983, p.306.
  • [63] Carrier G.F., Krook M. & Pearson C.E. Functions of a complex variable. Theory and technique. New York: McGraw-Hill, 1966, p.19.
  • [64] Fischer G. Complex analytic geometry. Berlin: Springer, 1976, p.110.
  • [65] Norton R.E. Complex analysis for scientists and engineers. An introduction. Oxford: Oxford Univ. Press, 2010, p.230ff.
  • [66] Andersson M. Topics in complex analysis. New York: Springer, 1997, p.15f.
  • [67] Stewart I. & Tall D. Complex analysis. (The hitchhiker’s guide to the plane). Cambridge: Cambridge Univ. Press, 1996, p.201f.
  • [68] Stroud K.A. & Booth D. Engineering mathematics. New York: Palgrave, 2001, p.386.
  • [69] Riley K.F., Hobson M.P. & Bence S.J. Mathematical methods for physics and engineering. Cambridge: Cambridge Univ. Press, 2008, p.1046.
  • [70] Wallach N.R. Harmonic analysis on homogeneous spaces. Mineola, NY: Dover, 2018, p.17ff.
  • [71] LePage W.R. Complex variables and the Laplace transform for engineers. New York, Dover, 1980, p.169ff.
  • [72] Shilov G.E. Elementary real and complex analysis. Mineola, NY: Dover, 1996, p.143ff.
  • [73] Cartan H. Elementary theory of analytic functions of one and several variables. New York: Dover, 1995, p.14.
  • [74] Saff E.B. & Snider A.D. Fundamentals of complex analysis with applications to engineering and science. Third edition. Pearson Education, pp.60,382.
  • [75] D’Angelo J.P. An introduction to complex analysis and geometry. Providence, RI: AMS, 2013, p.156.
  • [76] Gelbaum B.R. Modern real and complex analysis. New York: Wiley, 1995, p.369f.
  • [77] Berndt B.C. & Joshi P.T. Chapter 9 of Rmanujan’s second notebook. Infinite series identities, transformations, and evaluations. Providence, RI: AMS, 1983, p.31ff.
  • [78] Nahin P.J. Inside interesting integrals (with an introduction to contour integration). New York: Springer, 2015, p.14f.
  • [79] McGehee O.C. An introduction to complex analysis. New York: Wiley, 2000, p.93.
  • [80] Ablowitz M.J. & Fokas A.S. Complex variables: Introduction and applications. Cambridge: Cambridge Univ. Press, 2017, p.50.
  • [81] Stroud K.A. & Booth D. Advanced engineering mathematics. New York: Industrial Press, 2003, p.273f.
  • [82] Boas R.P. Invitation to complex analysis. Washington, DC: MAA, 2010, p.82.
  • [83] Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. International Letters of Chemistry, Physics and Astronomy 36 (2014) 220-235
  • [84] Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. International Letters of Chemistry, Physics and Astronomy 41 (2015) 45-72
  • [85] Kolata G. Topologists startled by new results. First a famous problem was solved, and now there is proof that there is more than one four-dimensional spacetime. Science 217 (1982) 432-433
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-6df99dee-8f7d-4d3e-bd4f-110ccd23c4ce
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.