Preferences help
enabled [disable] Abstract
Number of results
2017 | 70 | 2 | 51-70
Article title

Improvement of plant heat tolerance by modification of xanthophyll cycle activity

Title variants
Languages of publication
Plants are sessile organisms hence environmental factors such as excessive light and high air temperature lead to significant reductions of their productivity and quality of gained yield. In fact, scientific and agriculture hubs make lots of efforts to improve crop tolerance to elevated temperature, selecting more tolerant varieties. We analyzed less expensive and highly efficient method to improve resistance of well-known cultivars of crop plant by reversible modification of xanthophyll cycle. It functions as a safety valve to adjust energy transfer and protects fragile structures of photosynthetic machinery from excessive light, especially accompanied by heat or water stress. Efficiency of modified xanthophyll cycle activity was measured after pre-treatment with four, chemically different regulators, with or without light illumination. Analyses were carried out on barley (Hordeum vulgare L.) cv. Zenek treated with ascorbic acid (AsA), dithiothreitol (DTT), putrescine (Put) and calcium ions (Ca2+). To measure the scale of thermal energy dissipation we traced energy transfer absorbed by PSII with PAM chlorophyll fluorescence technique. Results showed clear correlation between AsA (activator of violaxanthin de-epoxidase) treatment and stimulation of the Φ(NPQ) at increased temperature. DTT (inhibitor of violaxanthin de-epoxidase) decreased the cycle activity at 45 °C at the same time increasing its value at 35°C, caused by interaction with other enzymes. Action of Put (hydrogen ions buffer) concerned mainly a non regulated Φ(NO) energy quenching. We noticed that application of Ca(NO3)2 (Ca2+ source for enzyme activity) reduced the Φ(NPQ) at 45 °C and stimulated it at 25 °C. Obtained results confirmed postulated possibility of creating new type of plant protection products (PPPs) able to precisely manage natural mechanisms of heat resistance.
Physical description
  • Department of Biochemistry and Genetics, The Jan Kochanowski University in Kielce, Poland
  • Department of Nature Conservation and Plant Physiology, The Jan Kochanowski University in Kielce, Poland
  • [1] Agrawal D., Allakhverdiev S.I., Jajoo A. (2016). Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress. The Russian Journal of Plant Physiology, 2: 210-215.
  • [2] Ali R.M. (2000). Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Science, 152(2): 173-179.
  • [3] Alliegro M.C. (2000). Effects of dithiothreitol on protein activity unrelated to thiol disulfide exchange: for consideration in the analysis of protein function with Cleland’s reagent. Analytical Biochemistry, 1: 102-106.
  • [4] Brooks M. D., Sylak-Glassman E. J., Fleming G. R., Niyogi K. K. (2013). A thioredoxin like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proceedings of the National Academy of Sciences, 110(29): E2733-E2740.
  • [5] Calatayud A., Deltoro V. I., Abadía A., Abadía J., Barreno E. (1999). Effects of ascorbate feeding on chlorophyll fluorescence and xanthophyll cycle components in the lichen Parmelia quercina (Willd.) Vainio exposed to atmospheric pollutants. Physiologia Plantarum, 4: 679-684.
  • [6] Essemine J., Govindachary S., Joly D., Ammar S., Bouzid S., Carpentier R. (2012). Effect of moderate and high light on photosystem II function in Arabidopsis thaliana depleted in digalactosyl-diacylglycerol. Biochimica et Biophysica Acta - Bioenergetics, 1817(8): 1367-1373.
  • [7] Gruszecki W. I., Strzałka K., Bader K. P., Radunz A., Schmid G. H. (1996). Involvement of the xanthophyll cycle in regulation of cyclic electron flow around photosystem II. Zeitschrift für Naturforschung C, 51(1-2): 47-52.
  • [8] Havaux M., Gruszecki W. I., Dupont I., Leblanc R. M. (1991). Increased heat emission and its relationship to the xanthophylls cycle in pea leaves exposed to strong light stress, Journal of Photochemistry and Photobiology B: Biology, 8: 361-370.
  • [9] Höhner R., Aboukila A., Kunz H.H., Venema K. (2016). Proton gradients and proton dependent transport processes in the chloroplast. Frontiers in Plant Science, 7.
  • [10] Ioannidis N. E., Sfichi L., Kotzabasis K. (2006). Putrescine stimulates chemiosmotic ATP synthesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1757(7): 821-828.
  • [11] Ioannidis N. E., Kotzabasis K. (2007). Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochimica et Biophysica Acta (BBA), 1767: 1372-1382
  • [12] Ioannidis N. E., Cruz J. A., Kotzabasis K., Kramer D. M. (2012). Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS ONE, 1: e29864.
  • [13] Jahns P., Latowski D., Strzalka K. (2009). Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochimica et Biophysica Acta (BBA), 1787: 3-14.
  • [14] Jahns P., Holzwarth A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta - Bioenergetics, 1: 182-193.
  • [15] Leipner J., Stamp P., Fracheboud Y. (2000). Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta, 6: 964-969.
  • [16] Li X. P., Gilmore A. M., Caffarri S., Bassi R., Golan T., Kramer D., Niyogi K. K. (2004). Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. Journal of Biological Chemistry, 279(22): 22866-22874.
  • [17] Li X. G., Bi Y. P., Zhao S. J., Meng Q. W., Zou Q., He Q. W. (2005). Cooperation of xanthophyll cycle with water-water cycle in the protection of photosystems 1 and 2 against inactivation during chilling stress under low irradiance. Photosynthetica, 43(2): 261-266.
  • [18] Liang W., Wang M., Ai X. (2009). The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress. Scientia Horticulturae, 123: 34-38.
  • [19] Müller P., Li X. P., Niyogi K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125(4): 1558-1566.
  • [20] Müller-Moulé P., Conklin P.L., Niyogi K. K. (2002). Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Photosynthesis Research, 3: 970-977.
  • [21] Neubauer C. (1993). Multiple effects of dithiothreitol on nonphotochemical fluorescence quenching in intact chloroplasts (influence on violaxanthin de-epoxidase and ascorbate peroxidase activity). Plant Physiology, 103(2): 575-583.
  • [22] Neubauer C., Yamamoto H. Y. (1994). Membrane barriers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts. Photosynthesis Research, 39: 137-147.
  • [23] Rockholm D. C., Yamamoto H. Y. (1996). Violaxanthin de-epoxidase (purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalactosyldiacylglyceride). Plant Physiology, 2: 697-703.
  • [24] Shu S., Yuan L., Guo S., Sun J., Liu C. (2012). Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. African Journal of Biotechnology, 22: 6064-6074.
  • [25] Simionato D., Basso S., Zaffagnini M., Lana T., Marzotto F., Trost P., Morosinotto T. (2015). Protein redox regulation in the thylakoid lumen: The importance of disulfide bonds for violaxanthin de-epoxidase. FEBS Letters, 589: 919-923.
  • [26] Skowron E., Trojak M., Sobala T. (2016a). Wykorzystanie regulatorów stresowej odpowiedzi do podnoszenia tolerancji roślin na suszę. [in:] K. Kraiński, (ed.), Interdyscyplinarność jako droga do rozwoju IV. Elbląg, ISBN: 978-83-945304-1-9, p. 43-54.
  • [27] Skowron E., Trojak M., Sobala T. (2016b). Molecular markers of delayed senescence in transgenic tobacco with enhanced cytokinin level. World Scientific News, 51: 13-25.
  • [28] Sobieszczuk-Nowicka E., Wieczorek P., Legocka J. (2009). Kinetin affects the level of chloroplast polyamines and transglutaminase activity during senescence of barley leaves. Acta Biochimica Polonica, 56(2): 255-259.
  • [29] Song X. S., Shang Z.W., Yin Z. P., Ren J., Sun M. C., Ma X. L. (2011). Mechanism of xanthophyll-cycle-mediated photoprotection in Cerasus humilis seedlings under water stress and subsequent recovery. Photosynthetica, 49(4): 523-530.
  • [30] Trojak M., Skowron E., Sobala T. (2016a). Rola modyfikacji aktywności cyklu ksantofilowego w podnoszeniu tolerancji roślin na stres cieplny. [in:] A. Bajguz, I. Ciereszko (eds.), Różnorodność biologiczna – od komórki do ekosystemu. Rośliny i grzyby – badania środowiskowe i laboratoryjne. Białystok, ISBN: 978-83-62069-72-9, p. 99-111
  • [31] Trojak M., Skowron E., Sobala T. (2016b). Nieinwazyjne techniki oceny tolerancji roślin na stres cieplny w odpowiedzi na szybko zmieniające się środowisko naturalne. [in:] J. Chmielewski, I. Żeber-Dzikowska, B. Gworek (eds.), Człowiek a Środowisko - wzajemne oddziaływanie. Warszawa, ISBN: 978-83-60312-82-7, p. 93-101.
  • [32] Vaz J., Sharma P. K. (2011). Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. Indian Journal of Experimental Biology, 1: 60-67.
  • [33] Ware M. A., Belgio E., Ruban A. V. (2015). Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. The Journal of Experimental Botany, 66(5): 1259-1270.
  • [34] Xiong X., Wang X., Liao M. (2012). Xanthophyll cycle and its relative enzymes. Journal of Life Sciences, 6: 980-984.
  • [35] Yang S., Wang F., Guo F., Meng J. J., Li X. G., Dong S. T., Wan S. B. (2013). Exogenous calcium alleviates photoinhibition of PSII by improving the xanthophyll cycle in peanut (Arachis hypogaea) leaves during heat stress under high irradiance. PLoS ONE, 8(8): e71214.
  • [36] Yang S., Wang F., Guo F., Meng J. J., Li X. G., Wan S. B. (2015). Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance. Journal of Integrative Plant Biology, 57(5): 486-495.
  • [37] Yin Y., Li S., Liao W., Lu Q., Wen X., Lu C. (2010). Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. The Journal of Plant Physiology, 167: 959-966.
  • [38] Yuan Y., Zhong M., Shu S., Du N., He L., Yuan L., Sun J., Guo S. (2015). Effects of exogenous putrescine on leaf anatomy and carbohydrate metabolism in cucumber (Cucumis sativus L.) under salt stress. The Journal of Plant Growth Regulation, 3: 451-464.
  • [39] Zeiger E., Zhu J. (1998). Role of zeaxanthin in blue light photoreception and the modulation of light–CO2 interactions in guard cells. The Journal of Experimental Botany, 49: 433-442.
  • [40] Zhang R., Cruz J. A., Kramer D. M., Magallanes‐Lundback M. E., Dellapenna D., Sharkey T. D. (2009). Moderate heat stress reduces the pH component of the transthylakoid proton motive force in light‐adapted, intact tobacco leaves. Plant, Cell & Environment, 11: 1538-1547.
  • [41] Zhao H. J., Tan J. F. (2005). Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves. Photosynthetica, 43: 473-476.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.