Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2021 | 37 | 102-116

Article title

Mathematical Modeling of Control Strategies for Visceral leishmaniasis


Title variants

Languages of publication



In this paper, a deterministic mathematical model for the transmission dynamics of Visceral leishmaniasis (VL) was formulated and analyzed. The basic reproductive number R0 was obtained using the next generation matrix method. The model which was parameterized using the 2011 cases of Visceral Leishmaniasis in South Sudan, was used to assess two control measures. Numerical simulation reveals that the exposed population is reduced by high detection rate, and low biting rate of sandflies. Further, our model simulation gave the values of the contact rate of susceptible human, α1 and the detection rate of new cases, σ at which the basic reproductive number is less than one, (R0 < 1), equal to one (R0 = 1) and greater than one (R0 > 1).






Physical description


  • Department of Mathematics & Statistics, School of Mathematics and Computing, Kampala International University, Kampala, Uganda
  • Department of Education Science, Faculty of Education Open and Distance E- Learning, Kampala International University, Kampala, Uganda


  • [1] Pau D Ready, Epidemiology of visceral leishmaniasis. Clin. Epidemiol. 6, pp. 147–154, 2014, doi: 10.2147/CLEP.S44267
  • [2] T. V. Piscopo and C. M. Azzopardi, Leishmaniasis. Postgrad. Med. J. vol. 83, no. 976, pp. 649–657, 2007, doi: 10.1136/pgmj.2006.047340corr1
  • [3] A. J. VK Garg, S Agrawal, S Rani, Post‐kala‐azar dermal leishmaniasis in Nepal. Int J Derm. vol. 40, pp. 179–184, 2001
  • [4] S. Mandal, R. Sarkar, and S. Sinha, Mathematical models of malaria - A review. Malar. J. vol. 10, no. 1, p. 202, 2011, doi: 10.1186/1475-2875-10-202
  • [5] N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality: The case of cutaneous leishmaniasis in Chichaoua, Morocco. J. Math. Biol. vol. 53, no. 3, pp. 421–436, 2006, doi: 10.1007/s00285-006-0015-0
  • [6] A. Stauch et al., Visceral leishmaniasis in the indian subcontinent: Modelling epidemiology and control. PLoS Negl. Trop. Dis. vol. 5, no. 11, 2011, doi: 10.1371/journal.pntd.0001405
  • [7] M. H. A. H. Ibrahim M. Elmojtaba, J. Y.T. Mugisha, Vaccination model for visceral leishmaniasis with infective immigrants. Math. Methods Appl. Sci. vol. 11, no. 2, pp. 216–226, 2013
  • [8] L. M. Ribas, V. L. Zaher, H. J. Shimozako, and E. Massad, Estimating the optimal control of zoonotic visceral leishmaniasis by the use of a mathematical model. Sci. World J. 2013, 810380, doi: 10.1155/2013/810380
  • [9] Subramanian A, Singh V, Sarkar RR. Understanding Visceral Leishmaniasis Disease Transmission and its Control—A Study Based on Mathematical Modeling. Mathematics 2015; 3(3): 913-944. https://doi.org/10.3390/math3030913
  • [10] M. Zamir, G. Zaman, and A. S. Alshomrani, Control strategies and sensitivity analysis of anthroponotic visceral leishmaniasis model. J. Biol. Dyn. vol. 11, no. 1, pp. 323–338, 2017, doi: 10.1080/17513758.2017.1339835
  • [11] E. A. Le Rutte et al., Elimination of visceral leishmaniasis in the Indian subcontinent: a comparison of predictions from three transmission models. Epidemics, vol. 18, no. 2017, pp. 67–80, 2017, doi: 10.1016/j.epidem.2017.01.002
  • [12] S. Biswas, Mathematical modeling of Visceral Leishmaniasis and control strategies. Chaos, Solitons and Fractals, vol. 104, no. June, pp. 546–556, 2017, doi: 10.1016/j.chaos.2017.09.005
  • [13] E. Agyingi and T. Wiandt, Analysis of a Model of Leishmaniasis with Multiple Time Lags in All Populations. Math. Comput. Appl. vol. 24, no. 2, p. 63, 2019, doi: 10.3390/mca24020063
  • [14] B. Pantha and I. M. Elmojtaba, Optimal control applied to a visceral leishmaniasis model. Electron. J. Differ. Equations, vol. 2020, no. July, pp. 1–24, 2020.
  • [15] I. M. Gandhi, V., Al-Salti, N.S. & Elmojtaba, Mathematical analysis of a time delay visceral leishmaniasis model. J. Appl. Math. Comput. vol. 63, pp. 217–237, 2020.
  • [16] A. A. Martynyuk, V. Lakshmikantham, S. Leela, Stability Analysis of Nonlinear Systems. New York: Marcel Dekker Inc, 1989.
  • [17] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. vol. 180, pp. 29–48, 2002
  • [18] S. D. Hove-Musekwa, F. Nyabadza, C. Chiyaka, P. Das, A. Tripathi, and Z. Mukandavire, Modelling and analysis of the effects of malnutrition in the spread of cholera. Math. Comput. Model. vol. 53, no. 9–10, pp. 1583–1595, 2011, doi: 10.1016/j.mcm.2010.11.060.
  • [19] C. Dye, The logic of visceral leishmaniasis control. Am J Trop Med Hyg, vol. 55, pp. 125–30, 1996.
  • [20] WHO, Death rate, crude (per 1000)-South Sudan, 2019. https://data.worldbank.org/indicator/SP.DYN.CDRT.IN?locations=SS.
  • [21] Sundar S, Agrawal G, Rai M, Makharia MK, Murray HW. Treatment of Indian visceral leishmaniasis with single or daily infusions of low dose liposomal amphotericin B: randomised trial. BMJ. 2001 Aug 25; 323(7310): 419-22. doi: 10.1136/bmj.323.7310.419
  • [22] WHO, Not endemic for CL Country General Information (WHO, 2013), 2013.

Document Type


Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.