PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 156 | 13-25
Article title

Further results on centered triangular sum graphs

Content
Title variants
Languages of publication
EN
Abstracts
EN
Let G be a graph with p vertices and q edges. The nth centered triangular number is denoted by M_n, where M_n = 1/2 (3n2 - 3n + 2). A centered triangular sum labeling of a graph G is a one-to-one function : V (G) → N ∪{0} that induces a bijection f *: E(G) →{M_1 〖,M〗_2,…M_q} of the edges of G defined by f * (uv) = f(u) + f(v), for all e = uv ∊ E(G). The graph which admits such labeling is called a centered triangular sum graph. In this article, the centered triangular sum labeling of union of some graphs are studied.
Year
Volume
156
Pages
13-25
Physical description
Contributors
author
  • Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu, India
  • Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu, India
  • Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamil Nadu, India
References
  • [1] B. D. Acharya, Construction of certain infinite families of graceful graphs from a given graceful graph. Def. Sci. J. 32(3) (1982) 231-236
  • [2] K. Amuthavalli and S. Dineshkumar, Some Polygonal Sum Labeling of Bistar. International Journal of Scientific and Research 5 (2016) 2229-5518
  • [3] M. Apostal, Introduction to Analytic Number Theory, Narosa Publishing House, Second Edition, 1991.
  • [4] J.C. Berbond, Graceful Graphs, Radio Antennae and French Wind Mills. Graph Theory and Combinatories, Pitman, London, (1979), 13-17.
  • [5] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications, Macmillan Press, London (1976).
  • [6] David M. Burton, Elementary Number Theory (Second Edition), Wm. C. Brown Company Publishers, 1980.
  • [7] M. Ellingham, Sum Graphs from Trees. Ars Combinatoria, 35 (1993) 335-349.
  • [8] Frank Werner. Graph Theoretic Problems and their New Applications. Mathematics, S 445 (2020) 1-4
  • [9] J.A.Gallian. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 22 (2019) #DS6
  • [10] S.W. Golomb, How to number a Graph, Graph Theory and Computing, R.C. Read, Academic Press, New York (1972).
  • [11] F. Harary, Graph Theory, Adision – Wesley, Reading Mass, 1969.
  • [12] F. Harary, Sum Graphs and Difference Graphs. Congr. Numer. 72 (1990) 101-108
  • [13] F. Harary, I. R. Hentzel and D. Jacobs Digitizing Sum Graphs over the Reals. Caribbean J. Math. Comput. Sci. 1 (1991) 1-4
  • [14] F. Harary, Sum Graphs over all integers. Discrete Mathematics 124 (1994) 99-105
  • [15] P.Jeyanthi, R.Kalaiyarasi and D.Ramya, Centered Triangular Mean Graphs. International J. Math. Combin. Vol. 1 (2019) 126-133
  • [16] Muhammed Imran, Adnan Aslam, Sohail Zafar and Waqar Nazeer, Further Results on Edge Irregularity Strength of Graphs. Indonesian Journal of Combinnatorics 1(2) (2017) 82-97
  • [17] G. Muppidathi Sundari & K. Murugan. Extra Skolem Difference Mean Labeling of Some Graphs. World Scientific News 145 (2020) 210-221
  • [18] K. Murugan and A. Subramanian, Labeling of Subdivided Graphs. American Journal of Mathematics and Sciences, Vol. 1, No. 1, January (2012), 143-149
  • [19] S. Murugesan, D. Jayaraman and J. Shiama, Centered triangular sum labeling of graphs. International Journal of Applied Information Systems, 5(7) (2013), 1-4
  • [20] S. Murugesan, D. Jayaraman and J. Shiama, Some higher order triangular sum labeling of graphs. International Journal of Computer Applications 72(10) (2013) 1-8
  • [21] G. Muthumanickavel, K. Murugan. Oblong Sum Labeling of Union of Some Graphs. World Scientific News 145 (2020) 85-94
  • [22] I. Niven and Herbert S. Zuckerman. An Introduction to the Theory of Numbers, Wiley Eastern Limited, Third Edition, 1991.
  • [23] K. R. Parthasarathy. Basic Graph Theory, Tata Mcgraw Hill Publishing Company Limited (1994).
  • [24] M. Prema and K. Murugan, Oblong sum labeling of some graphs. World Scientific News 98 (2018) 12-22
  • [25] D.S.T. Ramesh and M.P. Syed Ali Nisaya, Some Important Results on Pentagonal Graceful Graphs. International Journal of Applied Mathematical Sciences, Vol. 7, Issue 1, (2014) 71-77
  • [26] A. Rosa. On certain valuation of the vertices of a graph, Thoery of Graphs (Proc. Internat. Symposium, Rome, 1966), Gordon and Breach, N. Y and Dunod Paris (1967), 349-355
  • [27] S.K. Vaidya, U.M. Prajapati and P.L. Vihol. Some Important Result on Triangular Sum Graphs. Applied Mathematical and Science, Vol. 3, no. 36 (2009) 1763-1772
  • [28] M. Vanu Esakki and M. P. Syed Ali Nisaya. Two Modulo Three Sum Graphs. World Scientific News 145 (2020) 274-285
  • [29] N. Vedavathi, Dharmaiya Gurram. Applications on Graph Theory. International Journal of Engineering Research and Technology, Vol. 2, Issue 1, (2013) 1-4
  • [30] Venkatesh Srinivasan, Natarajan Chidambaram, Narasimhan Devadoss, Rajadurai Pakkirisamy & Parameswari Krishnamoorthi (2020) On the gracefulness of m-super subdivision of graphs, Journal of Discrete Mathematical Sciences and Cryptography, 23:6, 1359-1368, DOI: 10.1080/09720529.2020.1830561
  • [31] H. Yang, M.A. Rashid, S. Ahmad, M.K. Siddiqui, M. F. Hanif. Cycle super magic labeling of pumpkin, octagonal and hexagonal graphs. Journal of Discrete Mathematical Sciences and Cryptography 22(7), 1165-1176, (2019). DOI: 10.1080/09720529.2019.1698800
  • [32] L. Yan, Y. Li, X. Zhang, M. Saqlain, S. Zafar, M.R. Farahani. 3-total edge product cordial labeling of some new classes of graphs. Journal of Information & Optimization Sciences, 39(3) 2018, 705–724. DOI:10.1080/02522667.2017.1417727
  • [33] X. Zhang, F.A.Shah, Y. Li, L.Yan, A.Q. Baig, M.R. Farahani. A family of fifth-order convergent methods for solving nonlinear equations using variational iteration technique. Journal of Information and Optimization Sciences, 39(3), 2018, 673–694. DOI:10.1080/02522667.2018.1443628
  • [34] S. Mahendran and K. Murugan, Pentagonal Graceful Labeling of Some Graphs. World Scientific News 155 (2021) 98-112
  • [35] R. Sakthi Sankari and M. P. Syed Ali Nisaya, Seond Order Triangular Gracful Graphs. World Scientific News 155 (2021) 140-154
  • [36] M. Basker, P. Namasivayam, M. P. Syed Ali Nisaya. Some Results on Centered Triangular Sum Graphs. World Scientific News 155 (2021) 113-128
  • [37] M. Vanu Esakki, M. P. Syed Ali Nisaya, Some Results on Two Modulo Three Sum Graphs. Journal of Xidian University, 14(9) (2020) 1090-1099
  • [38] N. Meena, M. Madhan Vignesh. Strong Efficient Co-Bondage Number of Some Graphs. World Scientific News 145 (2020) 234-244
  • [39] Xiaojing Yang, Junfeng Du, Liming Xiong. Forbidden subgraphs for supereulerian and Hamiltoniangraphs. Discrete Applied Mathematics Volume 288, 15 January 2021, Pages 192-200. https://doi.org/10.1016/j.dam.2020.08.034
  • [40] Chiba, Shuya, Yamashita, Tomoki, 2018. Degree Conditions for the Existence of Vertex-Disjoint Cycles and Paths: A Survey. Graphs and Combinatorics, Vol. 34, Issue. 1, p. 1. https://doi.org/10.1007/s00373-017-1873-5
  • [41] Molla, Theodore, Santana, Michael, Yeager, Elyse 2020. Disjoint cycles and chorded cycles in a graph with given minimum degree. Discrete Mathematics, Vol. 343, Issue. 6, p. 111837. https://doi.org/10.1016/j.disc.2020.111837
  • [42] Kostochka, Alexandr, Yager, Derrek, Yu, Gexin 2020. Disjoint Chorded Cycles in Graphs with High Ore-Degree. Discrete Mathematics and Applications Vol. 165, p. 259. https://doi.org/10.1007/978-3-030-55857-4_11
  • [43] Costalonga, J.P., Kingan, Robert J., Kingan, Sandra R. 2021. Constructing Minimally 3-Connected Graphs. Algorithms, Vol. 14, Issue. 1, p. 9. https://doi.org/10.3390/a14010009
  • [44] Sullivan K, Rutherford D, Ulness DJ. Centered Polygonal Lacunary Graphs: A Graph Theoretic Approach to p-Sequences of Centered Polygonal Lacunary Functions. Mathematics 2019; 7(11): 1021. https://doi.org/10.3390/math7111021
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-6bf6d992-ce04-4b35-bdbc-3896ec829cff
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.