Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2024 | 53 | 231-243

Article title

Investigating pH-Dependent Modulations in Haemoglobin Response to Linoleic Acid: A Spectroscopic Analysis

Content

Title variants

Languages of publication

EN

Abstracts

EN
This study investigates the pH-dependent modulations in haemoglobin response to linoleic acid, employing a spectroscopic analysis across HbAA, HbAS, and HbSS variants. Concentration-dependent effects of linoleic acid at varying pH levels reveal nuanced behaviours in absorbance, peak maintenance, and spectra characteristics. At pH 7.2, HbAA and HbSS display increased absorbance with peak maintenance, while HbAS exhibits gradual absorbance rise. pH 5.0 induces absorbance increase in all variants, with maintained peaks at 415nm and gradual decrease at the oxy-band region. Variants exhibit distinct spectra characteristics, emphasizing the need for tailored approaches in clinical management. Findings align with empirical literature, emphasizing haemoglobin's multifunctionality. Implications span clinical considerations, dietary influences, and broader insights into haemoglobin stability. Suggestions for future studies propose molecular explorations, disease-specific investigations, computational modelling integration, longitudinal studies, and intervention strategy explorations. This study contributes to the evolving understanding of haemoglobin responses to environmental factors, laying groundwork for personalized approaches in healthcare and dietary recommendations.

Year

Volume

53

Pages

231-243

Physical description

Contributors

  • Department of Biochemistry, Imo State University, Owerri, Nigeria
  • Department of Biochemistry, Imo State University, Owerri, Nigeria

References

  • [1] Ahmed, M. H., Ghatge, M. S., & Safo, M. K. (2020). Haemoglobin: Structure, Function and Allostery. Subcellular Biochemistry, 94, 345–382. https://doi.org/10.1007/978-3-030-41769-7_14
  • [2] Albiti, A. H., & Nsiah, K. (2014). Comparative haematological parameters of HbAA and HbAS genotype children infected with Plasmodium falciparum malaria in Yemen. Hematology 19(3), 169–174. https://doi.org/10.1179/1607845413Y.0000000113
  • [3] Chikezie, P. C. (2009). Comparative methaemoglobin concentrations of three erythrocyte genotypes (HbAA, HbAS and HbSS) of male participants administered with five antimalarial drugs. African Journal of Biochemistry Research, 3(6), 266–271. https://doi.org/10.5897/AJBR.9000062
  • [4] Deller, M. C., Kong, L., & Rupp, B. (2016). Protein stability: a crystallographer’s perspective. Acta Crystallographica. Section F, Structural Biology Communications, 72(Pt 2), 72–95. https://doi.org/10.1107/S2053230X15024619
  • [5] Ezebuo, F. C., Eze, S. O. O., & Chilaka, F. C. (2012). Effects of sodium dodecyl sulphate on enhancement of lipoxygenase activity of haemoglobin. Indian Journal of Experimental Biology, 50(12), 847–852. https://pubmed.ncbi.nlm.nih.gov/23986967/
  • [6] Giardina, B. (2021). Haemoglobin: Multiple molecular interactions and multiple functions. An example of energy optimization and global molecular organization. Molecular Aspects of Medicine, 84, 101040. https://doi.org/10.1016/j.mam.2021.101040
  • [7] Hamilton, J. S., & Klett, E. L. (2021). Linoleic acid and the regulation of glucose homeostasis: A review of the evidence. Prostaglandins, Leukotrienes and Essential Fatty Acids, 175, 102366. https://doi.org/10.1016/j.plefa.2021.102366
  • [8] Harteveld, C. L., Achour, A., Arkesteijn, S. J. G., ter Huurne, J., Verschuren, M., Bhagwandien‐Bisoen, S., Schaap, R., Vijfhuizen, L., el Idrissi, H., & Koopmann, T. T. (2022). The haemoglobinopathies, molecular disease mechanisms and diagnostics. International Journal of Laboratory Hematology, 44(S1), 28–36. https://doi.org/10.1111/ijlh.13885
  • [9] Izuwa, G., Akpotuzor, J. O., Okpokam, D. C., Akpan, P. A., Ernest, N. A., & Asuquo, J. (2015). Haemorrheologic and Fibrinolytic Activities of HbSS, HbAS and HbAA Subjects in Abuja, Nigeria. Journal of Medical Sciences, 16(1-2), 32–37. https://doi.org/10.3923/jms.2016.32.37
  • [10] Nahavandi, M., Nichols, J., Mohabatkar, H., Gandjbakhche, A., & Kato, G. J. (2009). Near-infrared spectra absorbance of blood from sickle cell patients and normal individuals. Hematology, 14(1), 46–48. https://doi.org/10.1179/102453309x385133
  • [11] Rajendran, D., & Chandrasekaran, N. (2023). Molecular Interaction of Functionalized Nanoplastics with Human Haemoglobin. Journal of Fluorescence, 33(6), 2257–2272. https://doi.org/10.1007/s10895-023-03221-3
  • [12] Reinmuth-Selzle, K., Tchipilov, T., Backes, A. T., Tscheuschner, G., Tang, K., Ziegler, K., Lucas, K., Pöschl, U., Fröhlich-Nowoisky, J., & Weller, M. G. (2022). Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry. Analytical and Bioanalytical Chemistry, 414(15). https://doi.org/10.1007/s00216-022-03910-1
  • [13] Sinha, S., Jeyaseelan, C., Singh, G., Munjal, T., Paul, D., Bhatt, A. K., Bhatia, R. K., & Bhalla, T. C. (2023). Chapter 8: Spectroscopy—Principle, types, and applications. In Basic Biotechniques for Bioprocess and Bioentrepreneurship (pp. 145–164). Academic Press. https://doi.org/10.1016/B9780128161098.000088
  • [14] Whelan, J., & Fritsche, K. (2013). Linoleic Acid. Advances in Nutrition, 4(3), 311–312. https://doi.org/10.3945/an.113.003772
  • [15] Yuan, T., Fan, W.-B., Cong, Y., Xu, H.-D., Li, C.-J., Meng, J., Bao, N.-R., & Zhao, J.-N. (2015). Linoleic acid induces red blood cells and haemoglobin damage via oxidative mechanism. International Journal of Clinical and Experimental Pathology, 8(5), 5044–5052

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-6be6c047-9ff5-4225-8aad-e5975a4a8712
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.