Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 47 | 14-27

Article title

Curbing Antimicrobial Resistance, for Better Development in the Health and Public Sector

Content

Title variants

Languages of publication

EN

Abstracts

EN
With 1.27 million deaths in 2019, antimicrobial resistance (AMR) has resulted in the deaths of more people than HIV/AIDS and malaria combined. AMR is listed among the top 10 global public health priorities by the WHO. The magnitude of the AMR burden is poorly prioritized in the public health sector, and its impact is difficult to accurately estimate due to a lack of sufficient data, especially in Africa. The misuse and overuse of antibiotics for various non-medical purposes is widely reported, especially in low-income developing countries, as one of the key contributors to AMR, yet little effort is put in place to curb the menace. Also, the clinical pipeline of new antimicrobials is scanty. This review explores the mechanism of AMR, the effects of AMR on health and the public sector with regard to morbidity, mortality, and economic losses, and the impact of COVID-19 on AMR. Recent potential therapies that are used to combat AMR, such as phage therapy, and how they could bring about development in the public health sector were discussed. Also, the impact of vaccines and preventive strategies to curb the spread of AMR in the public sector were highlighted.

Year

Volume

47

Pages

14-27

Physical description

Contributors

  • Department of Biochemistry, University of Lagos, Akoka, Lagos State, Nigeria
  • Faculty of Pharmacy, University of Lagos, Akoka, Lagos State, Nigeria
author
  • Department of Microbiology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University Kano, Kano State, Nigeria
  • Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
  • Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
  • Department of Biochemistry, College of Medicine, University of Lagos, Lagos, Nigeria
  • Institute of Biomedical Sciences, University of Sao Paulo, Brazil

References

  • [1] Samreena, Iqbal Ahmada, Hesham A. Malak b, Hussein H. Abulreeshb. Environmental antimicrobial resistance and its drivers: a potential threat to public health. Journal of Global Antimicrobial Resistance 27 (2021) 101–11
  • [2] Sameer Dhingra, Nor Azlina A. Rahman, Ed Peile, Motiur Rahman, Massimo Sartelli, Mohamed Azmi Hassali, Tariqul Islam, Salequl Islam, and Mainul Haque Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter Frontiers in Public Health (2020) | Volume 8 | Article 535668
  • [3] Dr. Mohsen Naghavi, Christopher J L Murray, Kevin Shunji Ikuta, Fablina Sharara, Lucien Swetschinski, Gisela Robles Aguilar, Authia Gray, Chieh Han, Catherine Bisignano, Puja Rao, Eve Wool, Sarah C Johnson, Annie J Browne, Michael Give Chipeta, Frederick Fell, Sean Hackett, et al., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399: 629–55
  • [4] Thiruchelvi Pulingam, Thaigarajan Parumasivam, Amirah Mohd Gazzali, Azlinah Mohd Sulaiman, Jiun Yee Chee, Manoj Lakshmanan, Chai Fung Chin, Kumar Sudesh Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences 170 (2022) 106103
  • [5] Pieter-Jan Van Camp, David B. Haslam, and Aleksey Porollo. Bioinformatics Approaches to the Understanding of Molecular Mechanisms in Antimicrobial Resistance. Int. J. Mol. Sci. 2020, 21, 1363; doi:10.3390/ijms21041363
  • [6] Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W. A.; Jose, R.A.M.; et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022, 11, 200. https://doi.org/10.3390/antibiotics11020200
  • [7] Liu, A., Tran, L., Becket, E., Lee, K., Chinn, L., Park, E., Tran, K., and Miller, J.H., 2010. Antibiotic Sensitivity Profiles Determined with an Escherichia coli Gene Knockout Collection: Generating an Antibiotic Bar Code. Antimicrobial Agents and Chemotherapy, 54 (4), 1393–1403
  • [8] Azam A.H, Tan XE, Veeranrayanam S, Kiga K, Cup L. Bacteriophage Technology and Modern medicine. Antibiotics. 2020,10,999.
  • [9] Liu H, Li H, Liang Y, Du X, Yang C, Yang L, Xie L, Zhao R, Tong Y, Qui S, Song H. Phage delivered sensitization with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Theranosties 2021.10(4):6310-6321
  • [10] Samir S, El-Far A, Okasha H, Raina M, Samir F, and Nasr S. Isolation and Characterization of lytic bacteriophages from sewage at an Egyptian tertiary care hospital against methicillin-resistant Staphylococcus aureus clinical isolates. Saudi Journal for Biological Sciences 2022. 29(5): 3097-3106
  • [11] Blasco, L., Ambroa, A., Lopez, M., Fernandez-Garcia, L., Bleriot, I., Trastoy, R., Ramos-Vivas, J., Coenye, T., Fernandez-Cuenca, F., Vila, J., Martinez-Martinez, L., Rodriguez-Baño, J., Pascual, A., Cisneros, J. M., Pachon, J., Bou, G., & Tomas, M. (2019). Combined Use of the Ab105-2φΔCI Lytic Mutant Phage and Different Antibiotics in Clinical Isolates of Multi-Resistant Acinetobacter baumannii. Microorganisms Vol. 7, Issue 11, p. 556. https://doi.org/10.3390/microorganisms7110556
  • [12] Martins W.M, Toleman M.A, Gales A.C. Clinical utilization of bacteriophages: a new perspective to combat the antimicrobial resistance in Brazil. BRAZ J INFECT DIS. 2020, 24(3): 239-246
  • [13] Zaldastanishvili E, Leshkasheli L, Dadiania M, Nadareishvili L, Askilashvili L, Kvatadze N, Goderadzishvili M, Kutateladze M, and Balarjishvili N. Phage therapy experience at the eliava phage therapy center: Three cases of Bacterial persistence. Viruses. 2021, 13, 1901. https://doi.org/10.3390/v131010901
  • [14] Jansen KU, Knirsch C and Anderson A.S. The role of vaccines in preventing bacterial antimicrobial resistance. Nature Medicine 2018. Vol. 24
  • [15] Klien EY, Schuella E, Tseng KK,Morgan DJ, Laximinarayan R and Nandi A. The impact of influenza vaccination on antibiotic use in the United States, 2010-2017. OFID. 2020. doi:10.1093/ofid/ofaa223
  • [16] Kaufold S, Yaesoubi R and Pitzer VE. Predicting the impact of typhoid conjugate vaccine on antimicrobial resistance. Clinical Infectious Diseases 2019. 68(2): S96-S104
  • [17] Buchy P, Ascioglu S, Buisoon Y, Data S, Nissen M, Tambyah P.A and Vong S. Impact of vaccines on Antimicrobial resistance. International Journal of Infectious Diseases. 2020. 188-196
  • [18] Schrager LK, Vekemens J, Drager N, Lewinsohn DM and Olesen OF. The status of tuberculosis vaccine development. The Lancet Infectious Diseases 2020. 20(3): 28-37
  • [19] Syed AK, Saluja T, Cho H, Haiao A, Shaikh H, Wartel TA,Mogasale V, Lynch J, Kim JH, Ecler J and Sahastrabuddhe S. Review on the recent advances on typhoid vaccine development and challenges ahead. Clinical Infectious Diseases 2020. 7(2): S141-150
  • [20] Clegg J, Soldaini E, Mc Loghlin RM, Rittenhouse S, Bagnoli F and Phogat's. Staphylococcus aureus vaccine research and development. Front Immunol 2021. 12: 705360
  • [21] Kowarik M, Wether M, Haeptle MA, Braun M, Steffen M, Stefan K, Ravenscroft N, De Benedetto G, Z Uppiger M, Sirena D, Cesutti P and Wacker M. The development and characterization of an E.coli 025B bioconjugate vaccine. Glycoconj J. 2021. 38(4): 421-435
  • [22] Dror AA, Eisenbach N, Taiber S, Morozor NG, Mizrachi M, Zigron A, Srouji S, and Sela E. Vaccine hesitancy: the next challenge in the fight against COVID-19. European Journal of Epidemiology 2020. 35: 775-779
  • [23] Daley MF, Narwaney KJ, Shoup JO, Wagner NM, and Glanz JM. Addressing patients vaccine concerns: A Randomized trial of a social media intervention. AM J Prev Med. 2018. 55(1): 44-54
  • [24] https://www.who.int/publications/m/item/leveraging-vaccines-to-reduce-antibiotic-use-and-prevent-antimicrobial-resistance
  • [25] Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combating antimicrobial resistance. Nature Reviews/Microbiology 2021. Volume 19, 287
  • [26] Merz Beverly. How to prevent infections. Harvard Health publishing. 2020. https://www.health.harvard.edu/staying-healthy/how-to-prevent-infections
  • [27] Chiu N, Chi H, Tai Y, Peng C, Tseng C, Chen C, Tan BF and Lin C. Impact of wearing masks, hand hygiene, and social distancing on influenza, enterovirus and all-cause pneumonia during the coronavirus pandemic: Retrospective National Epidemiological Surveillance Study. Journal of Medical Internet Research 2020. 22(8)
  • [28] Novak M, Breznicky J, Kompanikova J, Hudecková H. Impact of hand hygiene knowledge on hand hygiene compliance. Med Glass. 2020. 17(1): 194-199
  • [29] Amodio E, Calamusa G, Tiralongo S, Lombardo F, and Genovese D. A survey to evaluate knowledge, attitude, and practices associated with risk of foodborne infections in a sample of Silicon general population. AIMS Public Health 2022. 9(3): 458-470
  • [30] Whiley DM, Jennison A, Pearson J, Lahra MM. Genetic characterization of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. The Lancet Infectious Diseases. 2018. 18(7): 717-718
  • [31] Martin I, Sawatzky P, Allen V, Lefebvre B, Hoang LMN, Naidu P, Minion J, Van Caeseele P, Halvare D, Gad RR, Zahariadis G, Corriveau A, German G, Tomas K, Mulvey MR. Multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae in Canada, 2012-2016. Can Commun Dis Rep 2019 Feb 7; 45(2-3): 45-53. doi: 10.14745/ccdr.v45i23a01
  • [32] Hamasuna R, Hanzawa H, Moritomo A, Matsumoto M, Hisami A, Tomisaki I, Akasaka T, Naohiro F, and Jensen JS.Analysis of fluoroquinolone resistance using mic determination and homology modeling of parc of contemporary Mycoplasma genitalium strains. Journal of Infection and Chemotherapy 2022. 28, 3, 377-383
  • [33] Wiyeh AB, Mome RKB, Mahasha PW, Kongnyuy EJ and Wiysonge CS. Effectiveness of the female condom in preventing HIV and sexually transmitted infections: a systematic review and meta-analysis. BMC Public Health. 2020. 30(319)
  • [34] Stover J and Tent Y. The impact of condom use on the HIV epidemic. Gates Open Research. 2020. 5: 911
  • [35] Chih-Cheng Lai, Shey-Ying Chen, Wen-Chien Ko, Po-Ren Hsueh. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents. 2021 Apr; 57(4): 106324, 2021 Mar 19. doi: 10.1016/j.ijantimicag.2021.106324
  • [36] Hyacinth O. U. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health 2021 Jan;14(1):53-60. doi: 10.1016/j.jiph.2020.10.018. Epub 2020 Dec 9
  • [37] Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 2020; 368: m606, http://dx.doi.org/10.1136/bmj.m606
  • [38] Gautret, P. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020 Jul; 20. doi: 10.1016/j.ijantimicag.2020.105949
  • [39] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507–13
  • [40] Tiri B, Sensi E, Marsiliani V, Cantarini M, Priante G, Vernelli C, et al. Antimicrobial stewardship program, COVID-19, and infection control: spread of carbapenem-resistant Klebsiella pneumoniae colonization in ICU COVID-19 patients. What did not work? J Clin Med 2020; 9: E2744
  • [41] Li J, Wang J, Yang Y, Cai P, Cao J, Cai X, et al. Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: a retrospective analysis. Antimicrob Resist Infect Control 2020; 9: 153
  • [42] Contou D, Claudinon A, Pajot O, Micaëlo M, Longuet Flandre P, Dubert M, et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann Intensive Care 2020; 10: 119
  • [43] Sharifipour E, Shams S, Esmkhani M, Khodadadi J, Fotouhi-Ardakani R, Koohpaei A, et al. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect Dis 2020; 20: 646
  • [44] Fu Y, Yang Q, Xu M, Kong H, Chen H, Fu Y, et al. Secondary bacterial infections in critically ill patients with coronavirus disease 2019. Open Forum Infect Dis 2020; 7: ofaa220
  • [45] Nori P, Szymczak W, Puius Y, Sharma A, Cowman K, Gialanella P, et al. Emerging co-pathogens: New Delhi metallo-β-lactamase producing Enterobacteriaceae infections in New York City COVID-19 patients. Int J Antimicrob Agents 2020: 106179
  • [46] Farfour E, Lecuru M, Dortet L, Guen ML, Cerf C, KarnycheffF, et al. Carbapenemase-producing Enterobacterales outbreak: another dark side of COVID-19. Am J Infect Control 2020; 48: 15336. DOI: 10.1016/j.ajic.2020.09.015
  • [47] Posteraro B, Torelli R, Vella A, Leone PM, De Angelis G., De Carolis E, et al. Panechinocandin-resistant Candida glabrata bloodstream infection complicating COVID-19: a fatal case report. J Fungi (Basel) 2020; 6: 163
  • [48] Sara Tomczyk, Angelina Taylor, Allison Brown, et al. Impact of the COVID-19 pandemic on the surveillance, prevention, and control of antimicrobial resistance: a global survey. J Antimicrob Chemother 2021; 76: 3045–3058. doi:10.1093/jac/dkab300
  • [49] Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science; 2001. Manipulating the immune response to fight infection. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27131/

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-6b36eadd-fa7f-4fab-bc14-46fad12c9f68
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.