PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 87 | 238-245
Article title

On the old and new matrix representations of the Clifford algebra for the Dirac equation and quantum field theory

Content
Title variants
Languages of publication
EN
Abstracts
EN
The standard 16-dimensional and new 64-dimensional representations of the Clifford algebras in the terms of Dirac matrices are under consideration. The matrix 64-dimensional representation of the Clifford algebra over the field of real numbers is presented. The relationship of this representation to the matrix representation of 28-dimensional algebra, which contains the standard and additional spin operators, is given. The role of matrix representations of the Clifford algebra in the quantum field theory is described. The role of matrix representations of and algebras in the proof of Fermion-Boson duality property of the Dirac and higher spin Dirac-like equations is demonstrated.
Discipline
Year
Volume
87
Pages
238-245
Physical description
References
  • [1] P. Lounesto, Clifford algebras and spinors, 2-nd edition. Cambridge: Cambridge University Press, 2001.
  • [2] D. S. Shirokov. Clifford algebras and spinors. Moscow: Steklov Mathematical Institute, 2011 (in russian).
  • [3] N. N. Bogoliubov, D. V. Shirkov, Introduction to the theory of quantized fields, New York: John Wiley and Sons, 1980.
  • [4] W. A. Hepner, Nuov. Cim. 26(2) (1962) 351–368
  • [5] M. Petras, Czech. J. Phys. 45(6) (1995) 455–464
  • [6] V. M. Simulik, I.Yu. Krivsky, arXiv 0908.3106 [math-ph] (2009) 5
  • [7] V. M. Simulik, I. Yu. Krivskiy, Reports of the National Academy of Sciences of Ukraine, 5 (2010) 82–88 (in ukrainian).
  • [8] I. Yu. Krivsky, V. M. Simulik, Cond. Matt. Phys. 13(4) (2010) 43101 (1–15)
  • [9] V. M. Simulik, I.Yu. Krivsky, Phys. Lett. A. 375(25) (2011) 2479–2483
  • [10] V. M. Simulik, I.Yu. Krivsky, I.L. Lamer, Cond. Matt. Phys. 15(4) (2012) 43101 (1–10)
  • [11] V. M. Simulik, I.Yu. Krivsky, I.L. Lamer, TWMS J. App. Eng. Math. 3(1) (2013) 46–61
  • [12] V. M. Simulik, I.Yu. Krivsky, I.L. Lamer, Ukr. J. Phys. 58(6) (2013) 523–533
  • [13] H. J. Bhabha, Rev. Mod. Phys. 17(2-3) (1945) 200–216
  • [14] V. Bargman, E.P. Wigner, Proc. Nat. Acad. Sci. USA 34 (1948) 211–223
  • [15] W. Rarita, J. Schwinger, Phys. Rev. 60(1) (1941) 61
  • [16] I. Yu. Krivsky, R. R. Lompay, V. M. Simulik, Theor. Math. Phys. 143(1) (2005) 541–558.
  • [17] V. M. Simulik, Ukr. J. Phys. 60(10) (2015) 985–1006
  • [18] V. M. Simulik, arXiv 1509.0463 [quant-ph, hep-th] (2015) 42
  • [19] V. M. Simulik, Proceedings of 9-th International Conference “Methods of non-Euclidean geometry in physics and mathematics (BGL-9)” Minsk, Belarus, (2015) 396–409
  • [20] V. M. Simulik, J. Phys: Conf. Ser. 670 (2016) 012047(1–16)
  • [21] V. M. Simulik, J. Phys: Conf. Ser. 804 (2017) 012040(1–10)
  • [22] F. Gürsey, Nuov. Cim. 7(3) (1958) 411–415
  • [23] N.H. Ibragimov, Theor. Math. Phys. 1(3) (1969) 267–274
  • [24] I.Yu. Krivsky, V.M. Simulik, Adv. Appl. Cliff. Alg. 6(2) (1996) 249–259
  • [25] V. M. Simulik, I. Yu. Krivsky, Adv. Appl. Cliff. Alg. 7(1) (1997) 25–34
  • [26] V. M. Simulik, I. Yu. Krivsky, Adv. Appl. Cliff. Alg. 8(1) (1998) 69–82
  • [27] V. M. Simulik, I. Yu. Krivsky, Ann. Fond. L. de Broglie 27(2) (2002) 303–328
  • [28] V. M. Simulik, I. Yu. Krivsky, Electromagnetic Phenomena 9(1) (2003) 103–114
  • [29] P. Garbaczewski, Int. J. Theor. Phys. 25(11) (1986) 1193–1208
Document Type
short_communication
Publication order reference
YADDA identifier
bwmeta1.element.psjd-6af6188a-3693-4ded-8044-5dea6ed0dc3f
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.