PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 20 | 236-245
Article title

SPIN-COATED CHITOSAN ON COPOLYESTER SUBSTRATES

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work, uniform thin chitosan coatings were spin coated onto copolyester substrate. The use of high concentration acetic acid (50 wt.%) as the chitosan solvent increased the protonation of chitosan amino groups, allowing for greater interactions between the solution and the surface of the substrate. Further, surface oxidation was used to incorporate additional functional groups in the copolyester surface, facilitating solution/substrate interactions. The interfacial interactions between the chitosan solution and copolyester substrate were evaluated by the contact angle measurements.
Publisher

Year
Volume
20
Pages
236-245
Physical description
Contributors
  • Polymer Institute, Division of Biomaterials and Microbiological Technologies, West Pomeranian University of Technology Al. Piastów 45, 70-311 Szczecin, Poland
  • Institute of Materials Science and Engineering, West Pomeranian University of Technology, Al. Piastów 19/117A, 70-310 Szczecin, Poland
  • Polymer Institute, Division of Biomaterials and Microbiological Technologies, West Pomeranian University of Technology Al. Piastów 45, 70-311 Szczecin, Poland, mirfray@zut.edu.pl
References
  • 1. Hall DB, Underhill P, Torkelson JM.; (1998) Spin Coating of Thin and Ultrathin Polymer Films. Polym Eng Sci 38, 2039-2045.
  • 2. Huang Y-Y, Chou K-S.; (2003) Studies on the spin coating process of silica films. Ceram Int 29, 485-493. DOI: 10.1016/S0272-8842(02)00191-8
  • 3. Sahu N, Parija B, Panigrahi S.; (2009) Fundamental understanding and modeling of spin coating process: A review. Indian J Phys 83, 493-502.
  • 4. Blake TD, Ruschak KJ.; (1997) Wetting: Static and Dynamic Contact Lines. In: Liquid Film Coating: Scientific Principles and Their Technological Implications., 63-65.
  • 5. Pavinatto FJ, Caseli L, Oliveira ON.; (2010) Chitosan in nanostructured thin films. Biomacromol. 11, 8, 1897-1908. DOI: 10.1021/bm1004838
  • 6. Niemczyk A, El Fray M.; (2013) Novel chitosan derivatives as films with an antimicrobial effect. Prog Chem Appl Chitin Its Deriv XVIII, 59-66.
  • 7.Carneiro-da-Cunha MG, Cerqueira M a., Souza BWS, et al.; (2010) Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydr Polym 82, 153-159. DOI: 10.1016/j.carbpol.2010.04.043
  • 8. Fu J, Ji J, Yuan W, Shen J.; (2005) Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 26, 6684-6692. DOI: 10.1016/j.biomaterials.2005.04.034
  • 9. Kao C-Y, Cheng W-H, Wan B-Z.; (1998) Investigation of alkaline hydrolysis of polyethylene terephthalate by differential scanning calorimetry and thermogravimetric analysis. J Appl Polym Sci 70, 1939-1945. DOI: 10.1002/(SICI)1097-4628(19981205)70:10<1939::AID-APP8>3.0.CO;2-G
  • 10. Fávaro SL, Rubira AF, Muniz EC, Radovanovic E.; (2007) Surface modification of HDPE, PP, and PET films with KMnO4/HCl solutions. Polym Degrad Stab 92, 1219-1226.
  • 11. Domenech SC, Severgnini VLS, Pinheiro EA, et al.; (2005) Effect of chemical surface treatment on thermal stability of poly(ethylene terephthalate) films used in flexible circuits. Polym Degrad Stab 88, 3, 461-467.
  • 12. Indest T, Laine J, Ribitsch V, Johansson LS, Stana-Kleinschek K, Strnad S.; (2008) Adsorption of chitosan on PET films monitored by quartz crystal microbalance. Biomacromol. 9, 2207-2214. DOI: 10.1021/bm800333p
  • 13. Liu Y, He T, Gao C.; (2005) Surface modification of poly ( ethylene terephthalate ) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells. Colloids Surfaces B Biointerfaces 46, 117-126.
  • 14. Korolkov I V, Mashentseva AA, Güven O, Niyazova DT, Barsbay M, Zdorovets M V.; (2014) The effect of oxidizing agents / systems on the properties of track-etched PET membranes. Polym Degrad Stab 107, 150-157. DOI: 10.1016/j.polymdegradstab.2014.05.008
  • 15. Liu L, Chen H, Pan D.; (2012) Modification of polyacrylonitrile precursor fiber with hydrogen peroxide. Fibers Polym 13, 5, 587-592.
  • 16. Piegat A, El Fray M.; (2007) Polyethylene terephthalate modification with the monomer from renewable resources. Polimery 52, 11, 885-888.
  • 17. http://www.kemet.co.uk/_uploads/downloads/Calotest.pdf 44, 0,.
  • 18. Geng X, Kwon O-H, Jang J.; (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26, 27, 5427-5432. DOI: 10.1016/j.biomaterials.2005.01.066
  • 19. Chattopadhyay DP, Inamdar MS.; (2010) Aqueous Behaviour of Chitosan. Int J Polym Sci 2010, 1-7. DOI: http://dx.doi.org/10.1155/2010/939536
  • 20. Zamani A, Taherzadeh MJ.; (2010) Production of low molecular weight chitosan by hot dilute sulfuric acid. BioResources 5, 1554-1564. DOI:
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-69969cbb-8294-40b4-9c2b-163e73016c46
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.