Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 13 | 3 | 352–362

Article title

Znaczenie suplementacji w regulacji zaburzeń strukturalnych oraz funkcjonalnych w ośrodkowym układzie nerwowym u osób z zespołem Downa

Content

Title variants

EN
The role of supplementation in the regulation of structural and functional central nervous system disorders among patients with Down syndrome

Languages of publication

PL EN

Abstracts

PL
Zespół Downa jest najczęstszą genetyczną przyczyną niepełnosprawności intelektualnej u ludzi, wynikającą z obecności dodatkowego chromosomu 21. W ciągu ostatnich kilku lat dokonano znacznego postępu w pogłębieniu wiedzy na temat zaburzeń na poziomie molekularnym oraz strukturalnym i funkcjonalnym narządów i układów u osób z zespołem Downa. Otrzymane wyniki badań skłoniły wielu naukowców do podjęcia prób zastosowania substancji bioaktywnych in vivo i in vitro w celu zahamowania zaburzeń w obrębie ośrodkowego układu nerwowego. Zastosowanie suplementów w postaci galusanu epigallokatechiny (epigallocatechin gallate, EGCG) przyczynia się do poprawy funkcjonowania mitochondriów w neuronach, obniżenia nadekspresji genu DYRK1A oraz ograniczenia nadprodukcji reaktywnych form tlenu. Przyjmowanie określonych dawek resweratrolu wpływa na poprawę funkcjonowania mitochondriów, zwiększenie proliferacji komórek progenitorowych w hipokampie oraz podobnie jak kurkumina i sok z granatu hamuje przedwczesne starzenie organizmu i zapobiega wystąpieniu choroby Alzheimera. Zaobserwowano ponadto, iż zastosowanie suplementów choliny w okresie ciąży u zwierząt doświadczalnych zdrowych i z trisomią przyczyniło się do stymulacji neurogenezy w hipokampie, poprawy koncentracji, nastroju oraz funkcjonowania procesów poznawczych u potomstwa.
EN
Down syndrome is the most common genetic cause of intellectual disability in humans, which results from the presence of an extra chromosome 21. Significant progress has been made over the past years in expanding knowledge on molecular, structural and functional abnormalities in patients with Down syndrome. The obtained findings encouraged many scientists to attempt to use bioactive substances in in vivo and in vitro settings to inhibit central nervous system disorders. The use of supplements in the form of epigallocatechin gallate (EGCG) contributes to improved mitochondrial function in neurons, reduced DYRK1A overexpression and limited overproduction of reactive oxygen species. Certain doses of resveratrol improve mitochondrial function, increase hippocampal progenitor cell proliferation and, similarly to curcumin and pomegranate juice, inhibit premature ageing and prevent Alzheimer’s disease. Furthermore, it was observed that the use of choline supplements during pregnancy in healthy and trisomic experimental animals contributed to the stimulation of hippocampal neurogenesis, improved concentration, mood and cognitive functions in the offspring.

Discipline

Year

Volume

13

Issue

3

Pages

352–362

Physical description

Contributors

  • Zakład Dietetyki, Wydział Nauk o Zdrowiu, Uniwersytet Medyczny we Wrocławiu, Wrocław, Polska
  • Zakład Dietetyki, Wydział Nauk o Zdrowiu, Uniwersytet Medyczny we Wrocławiu, Wrocław, Polska

References

  • 1. Wierzba J (ed.): Zespół Downa i medycyna. Bardziej Kochani, Warszawa 2014.
  • 2. Sadowska L, Mysłek-Prucnal M, Choińska AM et al.: Diagnostyka i terapia dzieci z zespołem Downa w świetle badań własnych i przeglądu literatury przedmiotu. Prz Med Uniw Rzesz 2009; 1: 8–30.
  • 3. Valenti D, De Rasmo D, Signorile A et al.: Epigallocatechin3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down’s syndrome. Biochim Biophys Acta 2013; 1832: 542–552.
  • 4. Kumar V, Pandey A, Jahan S et al.: Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Sci Rep 2016; 6: 28142.
  • 5. Jiang T, Zhi XL, Zhang YH et al.: Inhibitory effect of curcumin on the Al(III)-induced Aβ42 aggregation and neurotoxicity in vitro. Biochim Biophys Acta 2012; 1822: 1207–1215.
  • 6. Hara K, Ohara M, Hayashi I et al.: The green tea polyphenol (−)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health. Eur J Oral Sci 2012; 120: 132–139.
  • 7. Guedj F, Sébrié C, Rivals I et al.: Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One 2009; 4: e4606.
  • 8. Coyle CH, Philips BJ, Morrisroe SN et al.: Antioxidant effects of green tea and its polyphenols on bladder cells. Life Sci 2008; 83: 12–18.
  • 9. Qin S, Alcorn JF, Craigo JK et al.: Epigallocatechin-3-gallate reduces airway inflammation in mice through binding to proinflammatory chemokines and inhibiting inflammatory cell recruitment. J Immunol 2011; 186: 3693–3700.
  • 10. Stagni F, Giacomini A, Emili M et al.: Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome. Neuroscience 2016; 333: 277–301.
  • 11. Pons-Espinal M, Martinez de Lagran M, Dierssen M: Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A. Neurobiol Dis 2013; 60: 18–31.
  • 12. Chow HH, Cai Y, Hakim IA et al.: Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 2003; 9: 3312–3319.
  • 13. Ullmann U, Haller J, Decourt JP et al.: A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 2003; 31: 88–101.
  • 14. Naumovski N, Blades BL, Roach PD: Food inhibits the oral bioavailability of the major green tea antioxidant epigallocatechin gallate in humans. Antioxidants (Basel) 2015; 4: 373–393.
  • 15. Shukkur EA, Shimohata A, Akagi T et al.: Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for Down syndrome. Hum Mol Genet 2006; 15: 2752–2762.
  • 16. Pagano G, Castello G: Oxidative stress and mitochondrial dysfunction in Down syndrome. Adv Exp Med Biol 2012; 724: 291–299.
  • 17. Bavaresco L, Fregoni C, Cantù E et al.: Stilbene compounds: from the grapevine to wine. Drugs Exp Clin Res 1999; 25: 57–63.
  • 18. Aggarwal BB, Bhardwaj A, Aggarwal RS et al.: Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 2004; 24: 2783–2840.
  • 19. Lim CG, Fowler ZL, Hueller T et al.: High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 2011; 77: 3451–3460.
  • 20. Wang Y, Halls C, Zhang J et al.: Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 2011; 13: 455–463.
  • 21. Watts KT, Lee PC, Schmidt-Dannert C: Biosynthesis of plantspecific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 2006; 6: 22.
  • 22. Piver B, Fer M, Vitrac X et al.: Involvement of cytochrome P450 1A2 in the biotransformation of trans-resveratrol in human liver microsomes. Biochem Pharmacol 2004; 68: 773–782.
  • 23. Han YS, Zheng WH, Bastianetto S et al.: Neuroprotective effects of resveratrol against β-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 2004; 141: 997–1005.
  • 24. Huang TC, Lu KT, Wo YY et al.: Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 2011; 6: e29102.
  • 25. Donnelly LE, Newton R, Kennedy GE et al.: Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol 2004; 287: L774–L783.
  • 26. Cao Z, Li Y: Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur J Pharmacol 2004; 489: 39–48.
  • 27. Olas B: Resweratrol jako dobroczyńca w profilaktyce chorób układu krążenia. Kosmos Problemy Nauk Biologicznych 2006; 55: 277–285.
  • 28. Shapshak P: Molecule of the month: miRNA and Down’s syndrome. Bioinformation 2013; 9: 752–754.
  • 29. Nogueiras R, Habegger KM, Chaudhary N et al.: Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 2012; 92: 1479–1514.
  • 30. Almeida L, Vaz-da-Silva M, Falcão A et al.: Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 2009; 53 Suppl 1: S7–S15.
  • 31. Atalay T, Gulsen I, Colcimen N et al.: Resveratrol treatment prevents hippocamal neurodegeneration in a rodent model of traumatic brain injury. Turk Neurosurg 2016. DOI: 10.5137/1019- 5149.JTN.17249-16.2.
  • 32. Palomera-Avalos V, Griñán-Ferré C, Puigoriol-Ilamola D et al.: Resveratrol protects SAMP8 brain under metabolic stress: focus on mitochondrial function and Wnt pathway. Mol Neurobiol 2017; 54: 1661–1676.
  • 33. Valenti D, de Bari L, de Rasmo D et al.: The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta 2016; 1862: 1093–1104.
  • 34. Crowell JA, Korytko PJ, Morrissey RL et al.: Resveratrol-associated renal toxicity. Toxicol Sci 2004; 82: 614–619.
  • 35. Więdłocha M, Stańczykiewicz B, Jakubik M et al.: Wybrane mysie modele oparte na mutacji genów APP, MAPT oraz presenilin wykorzystywane w badaniach nad patogenezą choroby Alzheimera. Postepy Hig Med Dosw (Online) 2012; 66: 415–430.
  • 36. Perluigi M, Butterfield DA: Oxidative stress and Down syndrome: a route toward Alzheimer-like dementia. Curr Gerontol Geriatr Res 2012; 2012: 724904.
  • 37. Cooper SA, Ademola T, Caslake M: Towards onset prevention of cognition decline in adults with Down syndrome (The TOP-COG study): a pilot randomised controlled trial. Trials 2016; 17: 370.
  • 38. Zhao HF, Li N, Wang Q et al.: Resveratrol decreases the insoluble Aβ1–42 level in hippocampus and protects the integrity of the blood–brain barrier in AD rats. Neuroscience 2015; 310: 641–649.
  • 39. Chesser AS, Ganeshan V, Yang J et al.: Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci 2016; 19: 21–31.
  • 40. Velagapudi R, Baco G, Khela S et al.: Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells. Eur J Nutr 2016; 55: 1653–1660.
  • 41. Ji HF, Zhang HY: Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacol Sin 2008; 29: 143–151.
  • 42. Garcia-Alloza M, Borrelli LA, Rozkalne A et al.: Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 2007; 102: 1095–1104.
  • 43. Lim GP, Chu T, Yang F et al.: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21: 8370–8377.
  • 44. Taylor M, Moore S, Mourtas S et al.: Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomedicine 2011; 7: 541–550.
  • 45. Walker JM, Klakotskaia D, Ajit D et al.: Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer’s disease mouse model. J Alzheimers Dis 2015; 44: 561–572.
  • 46. Giunta B, Hou H, Zhu Y et al.: Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci Lett 2010; 471: 134–138.
  • 47. De la Torre R, De Sola S, Pons M et al.: Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res 2014; 58: 278–288.
  • 48. Zeisel SH: Choline: an essential nutrient for humans. Nutrition 2000; 16: 669–671.
  • 49. Zeisel SH: Choline: needed for normal development of memory. J Am Coll Nutr 2000; 19 (Suppl): 528S–531S.
  • 50. Cheng RK, MacDonald CJ, Williams CL et al.: Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learn Mem 2008; 15: 153–162.
  • 51. Glenn MJ, Gibson EM, Kirby ED et al.: Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats. Eur J Neurosci 2007; 25: 2473–2482.
  • 52. Wong-Goodrich SJ, Glenn MJ, Mellott TJ et al.: Spatial memory and hippocampal plasticity are differentially sensitive to the availability of choline in adulthood as a function of choline supply in utero. Brain Res 2008a; 1237: 153–166.
  • 53. Velazquez R, Ash JA, Powers BE et al.: Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2013; 58: 92–101.
  • 54. Strupp BJ, Powers BE, Valazquez R et al.: Maternal choline supplementation: a potential prenatal treatment for Down syndrome and Alzheimer’s disease. Curr Alzheimer Res 2016; 13: 97–106.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-68908c93-ee8b-484b-83ad-27ab24796d1e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.