Preferences help
enabled [disable] Abstract
Number of results
2015 | 2 | 2 | 143-147
Article title

Znaczenie filtra światła niebieskiego w soczewkach wewnątrzgałkowych stosowanych w chirurgii zaćmy

Title variants
Importance of blue light filter in intraocular lenses used in cataract surgery
Languages of publication
Promieniowanie światła niebieskiego jako czynnik fototoksyczny może prowadzić do poważnego uszkodzenia siatkówki ludzkiego oka. W niniejszym artykule przedstawiono znaczenie filtra światła niebieskiego w soczewkach wewnątrzgałkowych stosowanych w chirurgii zaćmy na podstawie aktualnych publikacji i badań klinicznych. Omówiono ważne aspekty dotyczące wpływu żółtych soczewek na ochronę siatkówki, z uwzględnieniem pacjentów narażonych na rozwój zwyrodnienia plamki żółtej (AMD, age-related macular degeneration) i proliferację komórek melanoma. Przedstawiono wpływ soczewek z filtrem światła niebieskiego na regulację rytmów okołodobowych, widzenie barwne, skotopowe, poczucie kontrastu oraz efekt blasku i olśnienia.
The blue light radiation, which is undoubtedly a phototoxic factor, can lead to a serious damage of the retina. This article presents the importance of blue light filter in intraocular lenses used in cataract surgery based on current publications and clinical trials. The important aspects, concerning the impact of yellow lenses to protect the retina, including patients at risk of AMD and proliferation of melanoma cells were discussed. The impact of intraocular lenses with blue light blocker on the regulation of circadian rhythms, color and scotopic vision, a sense of contrast and glare effects were presented.
Physical description
  • Katedra i Klinika Okulistyki, Uniwersytecki Szpital Kliniczny we Wrocławiu
  • Katedra i Klinika Okulistyki, Uniwersytecki Szpital Kliniczny we Wrocławiu
  • 1. Taylor H, West S, Muñoz B, et al. The long-term effects of visible light on the eye. Arch Ophthalmol 1992; 110(1): 99-104.
  • 2. Bullough J. The blue light hazard: A review. Journal of the Illuminating Engineering Society 2000; (29)2: 6-14.
  • 3. Weale R. Age and the transmittance of the human crystalline lens. J Physiology 1988; 395: 577-587.
  • 4. Miyake K, Ichihashi S, Shibuya Y, et al. Blood-Retinal Barrier and Autofluorescence of the Posterior Polar Retina in Long-Standing Pseudophakia. Journal Cataract Refract Surg 1999; 25(7): 891-897.
  • 5. Sparrow JR, Miller AS, Zhou J, et al. Blue light – absorbing intraocular lens and retinal pigment epithelium protection in vitro. J Cataract Refract Surg 2004; 30(4): 873-878.
  • 6. Rezai K, Gasyna E, Seagle BL, et al. AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment epithelium. Graefe’s Arch Clin Exp Ophthalmol 2008; 246(5): 671-676.
  • 7. Yanagi Y, Inoue Y, Iriyama A, et al. Effects of yellow intraocular lenses on light-induced upregulation of vascular endothelial growth factor. J Cataract Refract Surg 2006; 32(9): 1540-1544.
  • 8. Kernt M, Nubauer AS, Liegl R, et al. Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax, and Bcl-2 expression. J Cataract Refract Surg 2009; 35(2): 354-362.
  • 9. Obana A, Tanito M, Gotho Y, et al. Macular pigment changes in pseudophakic eyes quantified with resonance Raman spectroscopy. Ophthalmology 2011; 118(9): 1852-1858.
  • 10. Nolan J, O’Reilly P, Loughman J, et al. Augmentation of macular pigment following implantation of blue light-filtering intraocular lenses at the time of cataract surgery. Invest Ophthalmol Vis Sci 2009; 50(10): 4777-4785.
  • 11. Pipis A, Touliou E, Pillunat LE, et al. Effect of the blue filter intraocular lens on the progression of geographic atrophy. Eur J Ophthalmol 2015; 25(2): 128-133.
  • 12. Marshall JC, Gordon KD, McCauley CS, et al. The effect of blue light exposure and use of intraocular lenses on human uveal melanoma cell lines. Melanoma Res 2006; 16(6): 537-541.
  • 13. Urban E, Misiuk-Hojło M, Kasprzak-Smolarek P, et al. Circadian Rhythms and Organ of Sight. Silesian Piasts University of Medicine in Wroclaw. Adv Clin Exp Med 2006; 15(5): 953-957.
  • 14. La Morgia C, Ross-Cisneros FN, Sadun AA, et al. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain 2010; 133: 2426-2438.
  • 15. Kessel L, Lundeman JH, Herbst K, et al. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment. J Cataract Refract Surg 2010; 36: 308-312.
  • 16. Birren J, Casperson RC, Botwinck J, et al. Age changes in pupil size. J Gerontol 1950; 5(3): 216-221.
  • 17. Alexander I, Cuthbertson FM, Ratnarajan G, et al. Impact of Cataract Surgery on Sleep in Patients Receiving Either Ultraviolet -Blocking or Blue-Filtering Intraocular Lens Implants. Invest Ophthalmol Vis Sci 2014; 55(8): 4999-5004.
  • 18. Brøndsted A, Lundeman JH, Kessel L, et al. Short wavelength light filtering by the natural human lens and IOLs – implications for entrainment of circadian rhythm. Acta Ophthalmol 2013; 91(1): 52-57.
  • 19. Rodríguez-Galietero A, Montés-Micó R, Muñoz G, et al. Comparison of contrast sensitivity and color discrimination after clear and yellow intraocular lens implantation. J Cataract Refract Surg 2005; 31(9): 1736-1740.
  • 20. Augustin AJ. The physiology of scotopic vision, contrast vision, color vision, and circadian rhythmicity: can these parameters be influenced by blue-light-filter lenses? Retina 2008; 28(9): 1179-1187.
  • 21. Hammond B Jr, Renzi Lm, Sachak S, et al. Contralateral comparison of blue-filtering and non-blue-filtering intraocular lenses: glare disability, heterochromatic contrast, and photostress recovery. Clin Ophthalmology 2010; 4: 1465-1473.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.