Preferences help
enabled [disable] Abstract
Number of results
2020 | 143 | 67-78
Article title

Origin of living matter by a new model of consciousness

Title variants
Languages of publication
In this paper we consider the creation of living matter by a new appeared model of consciousness, named B-DS model, connected to the theories of unification of contemporary physics. In particular we deal with energies of subgroups SU(5), SU(6) and U(1) of SU(11) as superset of SU(5) ´ SU(6) ´ U(1). This is important in view of the potential importance of quantum effects in biology and in consciousness, where not only systems of known particles are considered, but we hypothesize new ones deriving by SU(6) and the significant effect of entanglement. We consider the human brain and its mental aspects as associated with classical brain physiology and also part of a quantum physical universe. We think that quantum mechanics can be relevant for explaining life and consciousness beyond the basic structure and interaction of matter atoms formed by the energy group of SU(5). For explaining biological systems we need to go beyond the present standard model of physics, i.e. starting by the energy group SU(11) instead of SU(5), considering then new unknown particles, tightly binding from the forces created by bosons of the latent energy group SU(6). The paper deals also with interesting information related to chemistry and quantum biology, as well as models related to life and brain working mechanism.
Physical description
  • University of Padova, School of Science, Department of Chemical Science, Via Marzolo 1, 35131 Padova, Italy
  • Lakshmipur Swamiji Seva Sangh High School Laskhmipur, Gobardanga, 24 Parganas (N), West Bengal, India
  • [1] N. K. Bhadra, The complex model of the universe, IOSR Journal of Mathematics 2(4), 41-45 (2012).
  • [2] P. Di Sia, N. K. Bhadra, Origin of consciousness and contemporary physics, World Scientific News, 140, 127-138 (2020).
  • [3] N. K. Bhadra, The complex model of the quantum universe, IOSR Journal of Mathematics 4(1), 20-33 (2012).
  • [4] M. Morris, K. Thorne, U. Yurtsever, Wormholes, Time Machines, and the Weak Energy Condition, Physical Review Letters 61, 1446-1449 (1988). doi:10.1103/PhysRevLett.61.1446.
  • [5] G. Fosar, F. Bludorf, Vernetzte Intelligenz: Die Natur geht online. Gruppenbewußtsein, Genetik, Gravitation, Hannover: Omega Verlag (2001).
  • [6] V. Dallacasa, P. Di Sia, Quantum percolation and transport properties in high Tc superconductors, International Journal of Modern Physics B, 14(25-27), 3012-3019 (2000).
  • [7] P. Di Sia, Relativistic nano-transport and artificial neural networks: details by a new analytical model, International Journal of Artificial Intelligence and Mechatronics 3(3), 96-100 (2014).
  • [8] P. Di Sia, D = 4, N = 1 supergravity in superspace: general overview and technical analysis, World Scientific News 94(1), 1-71 (2018).
  • [9] J. C. Baez, J. Huerta, The Algebra of Grand Unified Theories, arXiv:0904.1556v2 [hep-th] (2010).
  • [10] P. Grozman, D. Leites, I. Shchepochkina, Lie superalgebras of string theories, Acta Mathematica Vietnamica 26, 27-63 (2005).
  • [11] P. Di Sia, Mindfulness, Consciousness and Quantum Physics, World Scientific News, 96, 25-34 (2018).
  • [12] P. Di Sia, Quantum-Relativistic Velocities in Nano-Transport, Applied Surface Science, 446, 187-190 (2018),
  • [13] P. Di Sia, Mathematics and Physics for Nanotechnology - Technical Tools and Modelling, Singapore: Jenny Stanford Publishing, CRC Press (2019).
  • [14] J. Cai, S. Popescu, and H. J. Briegel, Dynamic entanglement in oscillating molecules and potential biological implications, Physical Review E 82, 021921 (2010),
  • [15] K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H. J. Pohl, J. J. Morton, M. L. Thewalt, Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342(6160), 830-3 (2013). doi:10.1126/science.1239584
  • [16] G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, G. S. Engel, Long-lived quantum coherence in photosynthetic complexes at physiological temperature, Proceedings of the National Academy of Sciences of the United States of America, 107(29), 12766-70 (2010), doi:10.1073/pnas.1005484107
  • [17] M. Cifra, J. Z. Fields, A. Farhadi, Electromagnetic cellular interactions, Progress in Biophysics & Molecular Biology, 105(3), 223-46 (2011). doi:10.1016/j.pbiomolbio.2010.07.003
  • [18] H. P. Stapp, Why Classical Mechanics Cannot Naturally Accommodate Consciousness But Quantum Mechanics Can, arXiv:quant-ph/9502012v1 (1995).
  • [19] A. Marais, B. Adams, A. K. Ringsmuth, M. Ferretti, J. M. Gruber, R. Hendrikx, M. Schuld, S. L. Smith, I. Sinayskiy, T. P. J. Krüger, F. Petruccione, R. van Grondelle, The future of quantum biology, Journal of the Royal Society Interface, 15, 20180640, (2018).
  • [20] J. Sabin, E. Brandas (Eds), Advances in Quantum Chemistry, Vol. 77, Cambridge, MA: Academic Press (2018).
  • [21] M. White, The G-Ball, a New Icon for Codon Symmetry and the Genetic Code, arXiv:q-bio/0702056v1 [q-bio.OT] (2007).
  • [22] Y. Suzuki, M. Lu, E. Ben-Jacob, J. N. Onuchic, Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays. Scientific Reports, 6, Article n.: 21037 (2016).
  • [23] S. Ranganathan, K. Nakai, C. Schonbach, Encyclopedia of Bioinformatics and Computational Biology - ABC of Bioinformatics (1st ed.), Elsevier (2018).
  • [24] C. I. Stuart, Y. Takahashi, H. Umezawa, On the stability and non-local properties of memory, Journal of Theoretical Biology, 71(4), 605-18 (1978).
  • [25] M. Jibu, K. Yasue, Quantum brain dynamics and consciousness: An introduction, in: Advances in consciousness research (Vol. 3), Amsterdam: John Benjamins Publishing Company (1995),
  • [26] A. Litt, C. Eliasmith, F. W. Kroon, S. Weinstein, P. Thagard, Is the Brain a Quantum Computer? Cognitive Science, 30, 593-603 (2006).
  • [27] D. Rudrauf, D. Bennequin, I. Granic, G. Landini, K. Friston, K. Williford, A mathematical model of embodied consciousness, Journal of Theoretical Biology, 428, 106-131 (2017).
  • [28] S. Hameroff, Quantum computation in brain microtubules? The Penrose–Hameroff ‘Orch OR’ model of consciousness, Philosophical Transactions of the Royal Society A, 356, 1869-1896 (1998).
  • [29] S. Hameroff, How quantum brain biology can rescue conscious free will, Frontiers in Integrative Neuroscience, 6, 93 (2012). doi:10.3389/fnint.2012.00093
  • [30] S. Hameroff, R. Penrose, Consciousness in the universe: A review of the ‘Orch OR’ theory, Physics of Life Reviews, 11(1), 39-78 (2014).
  • [31] M. Tegmark, Importance of quantum decoherence in brain processes, Physical Review E, 61, 4194 (2000).
  • [32] S. Hagan, S. R. Hameroff, and J. A. Tuszyński, Quantum computation in brain microtubules: Decoherence and biological feasibility, Physical Review E, 65, 061901 (2002).
  • [33] L. P. Rosa, J. Faber, Quantum models of the mind: Are they compatible with environment decoherence? Physical Review E, 70, 031902 (2004).
  • [34] G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, G. R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446, 782-786 (2007).
  • [35] E. Collini, G. D. Scholes, Coherent intrachain energy migration in a conjugated polymer at room temperature. Science, 323, 369-373 (2009).
  • [36] L. Demetrius, Quantum statistics and alometric scaling of organisms, Physica A, 322, 477-490 (2003).
  • [37] V. Parpura, A. Schousboe, A. Verkhratsky (Eds), Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain (Advances in Neurobiology Book 11), Berlin: Springer (2014).
  • [38] O. Henri-Rousseau and P. Blaise, Quantum Oscillators, Hoboken, NJ: Wiley (2011).
  • [39] B. Libet, Reflections on the interaction of the mind and brain, Progress in Neurobiology, 78(3-5), 322-6 (2006). doi:10.1016/j.pneurobio.2006.02.003
  • [40] C. S. Soon, M. Brass, H.-J. Heinze & J.-D. Haynes, Unconscious determinants of free decisions in the human brain, Nature Neuroscience 11, 543-545 (2008). doi:10.1038/nn.2112
  • [41] S. Bode, A. H. He, C. S. Soon, R. Trampel, R. Turner, J.-D. Haynes, Tracking the Unconscious Generation of Free Decisions Using UItra-High Field fMRI, PLoS ONE, 6(6), e21612 (2011).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.