PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 99 | 95-106
Article title

Latent heat utilization approach and the role of phase change materials

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Latent Heat Storage is one of the methods to store thermal energy other than Sensible heat storage and Thermo-chemical storage. In latent heat storage system, the Phase change materials (PCM) play the role of a medium for storing energy and releasing it when required. These materials store heat energy when they change from solid form to liquid form, from liquid form to gaseous form or from solid form to solid form (change of one crystalline form into another without a physical phase change). Then release that energy when they have the reverse phase changes.
Year
Volume
99
Pages
95-106
Physical description
References
  • [1] Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon 2008 Jan 1; 46(1): 159-68.
  • [2] Yagi J, Akiyama T. Storage of thermal energy for effective use of waste heat from industries. Journal of Materials Processing Technology 1995 Jan 15; 48(1-4): 793-804.
  • [3] Jalalzadeh-Azar AA, Steele WG, Adebiyi GA. Heat Transfer in a High-Temperature Packed Bed Thermal Energy Storage System—Roles of Radiation and Intraparticle Conduction. Journal of energy resources technology 1996 Mar 1; 118(1): 50-57.
  • [4] Farid MM, Khudhair AM, Razack SA, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy conversion and management 2004 Jun 1; 45(9-10): 1597-615.
  • [5] Zalba B, Marın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied thermal engineering 2003 Feb 1; 23(3): 251-83.
  • [6] Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable energy reviews 2009 Feb 1; 13(2): 318-45.
  • [7] Baetens R, Jelle BP, Gustavsen A. Phase change materials for building applications: a state-of-the-art review. Energy and buildings 2010 Sep 1; 42(9): 1361-8.
  • [8] Cabeza LF, Castell A, Barreneche CD, De Gracia A, Fernández AI. Materials used as PCM in thermal energy storage in buildings: a review. Renewable and Sustainable Energy Reviews 2011 Apr 1; 15(3): 1675-95.
  • [9] Sarı A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering 2007 Jun 1; 27(8-9): 1271-7.
  • [10] Mondal S. Phase change materials for smart textiles–An overview. Applied Thermal Engineering 2008 Aug 1; 28(11-12):1 536-50.
  • [11] Chang CC, Tsai YL, Chiu JJ, Chen H. Preparation of phase change materials microcapsules by using PMMA network-silica hybrid shell via sol-gel process. Journal of Applied Polymer Science 2009 May 5; 112(3): 1850-7.
  • [12] Velraj R., Pasupathy A., Phase change material based thermal storage for energy conservation in building architecture, Available at: http://celsius.co.kr/phase_change_materials/download/energy/PCM_based_thermal_storage_for_energy_conservation_in_building_architecture.pdf, (accessed 10/05/2012).
  • [13] Ismail K.A.R., Henriquez J. R., Thermally effective windows with moving phase change material curtains, Applied Thermal Engineering, 2001, 21, p. 1909-1923.
  • [14] Sunliang C., State of the art thermal energy storage solutions for high performance buildings, Master`s Thesis, university of Jyvaskyla, Department of physics, Master`s Degree Programme in Renewable Energy, 2010.
  • [15] Bose D, Bose A. Graphene-based Microbial Fuel Cell Studies with Starch in sub-Himalayan Soils. Indonesian Journal of Electrical Engineering and Informatics 2017 Mar 1; 5(1): 16-21.
  • [16] Bose D, Bose A. Electrical Power Generation with Himalayan Mud Soil Using Microbial Fuel Cell. Nature Environment and Pollution Technology 2017 Jun 1; 16(2): 433.
  • [17] Bose D, Bose A, Mitra S, Jain H, Parashar P. Analysis of Sediment-Microbial Fuel Cell Power Production in Series and Parallel Configurations. Nature Environment and Pollution Technology 2018 Mar 1; 17(1): 311-4.
  • [18] Kumar N, Bharadwaj V, Mitra S, Bose D. RO Reject Water Management Techniques. World News of Natural Sciences 14 (2017) 1-10.
  • [19] Matthias Wuttig. Phase-change materials: Towards a universal memory? Nature Materials 4, 265–266 (2005), doi:10.1038/nmat1359
  • [20] Scott, J. F. & de Araujo, C. A. P. Science 246, 1400–1405 (1989).
  • [21] M. Wuttig, C. Steimer. Phase change materials: From material science to novel storage devices. Applied Physics A, June 2007, Volume 87, Issue 3, pp 411–417
  • [22] D.A. Baker, M.A. Paesler, G. Lucovsky, S.C. Agarval, P.C. Taylor, Phys. Rev. Lett. 96, 255501 (2006)
  • [23] C.E. Bouldin, R.A. Forman, M.I. Bell, Phys. Rev. B 35, 1429 (1987)
  • [24] C.E. Bouldin, R.A. Forman, M.I. Bell, E.P. Donovan, Phys. Rev. B 44, 5492 (1991)
  • [25] M.C. Ridgway, C.J. Glover, G.J. Foran, K.M. Yu, J. Appl. Phys. 83, 4614 (1998)
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-64a02b4a-afda-43be-b7a4-8d3cac0664a4
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.