PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 17 | 3 | 95-104
Article title

Perspektywy prewencji i leczenia odbiorczych uszkodzeń słuchu

Content
Title variants
EN
Perspectives for prevention and treatment of sensorineural hearing loss
Languages of publication
PL EN
Abstracts
PL
Uszkodzenia słuchu są najczęstszym zaburzeniem narządów zmysłów, będąc przyczyną niepełnosprawności słuchowej u ponad 5% ludzi na świecie. Częstość uszkodzeń słuchu systematycznie zwiększa się, generując coraz większe koszty społeczne. Etiopatogeneza rozwoju odbiorczych uszkodzeń słuchu jest złożona. Mogą być one powodowane zaburzeniami genetycznymi, a także czynnikami środowiskowymi i osobniczymi. Aktualnie opisanych zostało ponad 100 genów, których mutacje są przyczyną wystąpienia izolowanej głuchoty lub niedosłuchu oraz scharakteryzowano ponad 400 zespołów złożonych wad rozwojowych, którym towarzyszy niedosłuch. Często jednak uszkodzenia słuchu są wypadkową uwarunkowań genetycznych oraz czynników środowiskowych. Przykładami chorób o zło- żonej etiologii są uszkodzenie słuchu spowodowane procesem starzenia się i uszkodzenie słuchu spowodowane hałasem, któ- rych rozwój zależy zarówno od czynników środowiskowych, jak i rodzinnie występujących polimorfizmów genów. W ostatnich latach w leczeniu i prewencji wielu chorób stosowane jest podejście oparte na medycynie spersonalizowanej, uwzględniające unikalny genom pacjenta, biomarkery, a także indywidualne czynniki środowiskowe i osobnicze. Spersonalizowane postępowanie w odbiorczych uszkodzeniach słuchu jest niedaleką przyszłością, dzięki dynamicznemu rozwojowi badań podstawowych nad narządem słuchu, w tym diagnostyki z zastosowaniem nowych technologii sekwencjonowania genów i doświadczalnej terapii genowej oraz badań nad procesami regeneracji komórek i neuronów słuchowych, w tym z zastosowaniem komórek macierzystych. W pracy przedstawiono osiągnięcia w zakresie badań doświadczalnych nad narządem słuchu w aspekcie przełożenia wyników tych prac na postępowanie w głuchotach odbiorczych u człowieka.
EN
Hearing loss (HL) is one of the most common sensory disorders in humans, causing hearing disability in over 5% of people in general population. The prevalence of hearing loss systematically increases generaing higher medical and nonmedical costs. Etiopathogenesis of sensorineural HL is complex and can be conditioned by genetic, environmental, as well as individual factors. Up to date over 100 genes whose mutations cause an isolated deafness and over 400 syndromic deafness have been described. Frequently both genetic and environmental factors underlie HL development. The examples of such complex diseases are age-related hearing loss (ARHL) and noise-induced hearing loss (NIHL), in the development of which environmental factors, as well as familial gene polymorphisms may play a role. In recent years, the strategies of medical care based on precise medicine are being introduced in the treatment and prevention of several diseases. This approach offers the medical care based on a patient’s unique genome, biomarkers as well as environmental and individual factors. Precise medicine is a very near future to be offered for management of sensorineural hearing loss, which is an advantage resulting from the progress in basic research and development of new diagnostic and therapeutic tools and methods, such as diagnostics with the use of new gene sequencing technologies and experimental gene therapy as well as research on regeneration processes of sensory cells and auditory neurons including the use of stem cells. The aim of this article is to present the progress and achievement in experimental research on regeneration of the inner ear in the aspect of its transitional value in the management of sensorineural hearing loss in humans.
Discipline
Publisher
Year
Volume
17
Issue
3
Pages
95-104
Physical description
Contributors
  • Klinika Audiologii i Foniatrii, Instytut Medycyny Pracy w Łodzi
References
  • 1. WHO, styczeń 2019, https://www.who.int/news-room/ fact-sheets/detail/deafness-and-hearing-loss.
  • 2. http://www.nidcd.nih.gov/health/hearing/pages/older.aspx NIDCD, April, 2014.
  • 3. Lin FR. Hearing loss and cognition among older adults in the United States. J Gerontol A Biol Sci Med Sci 2011; 66(10): 1131-6.
  • 4. Mohr PE, Feldman JJ, Dunbar JL. The societal costs of severe to profound hearing loss in the United States. Policy Anal Brief H Ser 2000; 2(1):1-4.
  • 5. Śliwińska-Kowalska M, Kotyło P, Borowiec M, GajdaSzadkowska A, Kowalski ML. Występowanie mutacji 35delG w genie koneksyny 26 wśród dzieci głuchych i niedosłyszących oraz ich rodziców. Otorynolaryngologia 2003; 2(3): 126-32.
  • 6. Rudman JR, Mei C, Bressler SE, Blanton SH, Liu XZ. Precision medicine in hearing loss. J Genet Genomics 2018; 45(2): 99-109.
  • 7. Zou B, Mittal R, Grati M, Lu Z, Shu Y, Tao Y, et al. The application of genome editing in studying hearing loss. Hear Res 2015; 327: 102-8.
  • 8. Kim BG, Shin JW, Park HJ, Kim JM, Kim UK, Choi JY. Limitations of hearing screening in newborns with PDS mutations. Int J Pediatr Otorhinolaryngol 2013; 77(5): 833-7.
  • 9. Shearer AE, Eppsteiner RW, Frees K, Tejani V, SloanHeggen CM, Brown C, et al. Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hear Res 2017; 348: 138-42.
  • 10. Plontke SK, Götze G, Rahne T, Liebau A. Intracochlear drug delivery in combination with cochlear implants: Current aspects. HNO 2017; 65(Suppl 1): 19-28.
  • 11. Bowl MR, Dawson SJ. The mouse as a model for age-related hearing loss – a mini-review. Gerontology 2015; 61(2): 149-57.
  • 12. Iizuka T, Kamiya K, Gotoh S, Sugitani Y, Suzuki M, Noda T, et al. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet 2015; 24(13): 3651-61.
  • 13. Isgrig K, Shteamer JW, Belyantseva IA, Drummond MC, Fitzgerald TS, Vijayakumar S, et al. Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome. Mol Ther 2017; 25(3): 780-91.
  • 14. Dinculescu A, Stupay RM, Deng WT, Dyka FM, Min SH, Boye SL, et al. AAV-Mediated Clarin-1 expression in the mouse retina: implications for USH3A gene therapy. PLoS One 2016; 11(2): e0148874.
  • 15. Sengillo JD, Justus S, Cabral T, Tsang SH. Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes (Basel) 2017; 8(2). pii: E53.
  • 16. Wu CC, Lin SY, Su YN, Fang MY, Chen SU, Hsu CJ. Preimplantation genetic diagnosis (embryo screening) for enlarged vestibular aqueduct due to SLC26A4 mutation. Audiol Neurootol 2010; 15(5): 311-7.
  • 17. Dubno JR, Schmiedt RA, Eckert MA, Lee FS, Matthews LJ. Fenotypy uszkodzeń słuchu zależnych od wieku u ludzi. Otorynolaryngologia 2011; 10(2): 74-80.
  • 18. Lin HW, Furman AC, Kujawa SG, Liberman MC. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 2011; 12(5): 605-16.
  • 19. Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 2013;110:577-86.
  • 20. Fernandez KA, Jeffers PW, Lall K, Liberman MC, Kujawa SG. Aging after noise exposure. Acceleration of cochlear synaptopathy in “recovered ears”. J Neurosci. 2015 May; 35(19):7509-20, doi: 10.1523/JNEUROSCI.5138-14.2015.
  • 21. Liberman MC, Kujawa SG. Hot topics: Hidden hearing loss. J Acoust Soc Am. 2014; 135:2311.
  • 22. Sliwinska-Kowalska M, Rzadzinska A, Jedlinska U, Rajkowska E. Hair cell regeneration in the chick basilar papilla after exposure to wide-band noise: evidence for ganglion cell involvement. Hear Res 2000; 148(1-2): 197- 212.
  • 23. Takeda H, Dondzillo A, Randall JA, Gubbels SP. Challenges in Cell-Based Therapies for the Treatment of Hearing Loss. Trends Neurosci 2018; 41(11): 823-37.
  • 24. Jones JM, Montcouquiol M, Dabdoub A, Woods C, Kelley MW. Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti. J Neurosci 2006; 26(2): 550-8.
  • 25. Takebayashi S, Yamamoto N, Yabe D, Fukuda H, Kojima K, Ito J, Honjo T. Multiple roles of Notch signaling in cochlear development. Dev Biol 2007; 307(1): 165-78.
  • 26. Yamamoto N, Tanigaki K, Tsuji M, Yabe D, Ito J, Honjo T. Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med (Berl) 2006; 84(1): 37-45.
  • 27. Tarnowski M, Sieron AL. Adult stem cells and their ability to differentiate. Med Sci Monit 2006; 12(8): RA154-63.
  • 28. Revuelta M, Santaolalla F, Arteaga O, Alvarez A, SánchezDel-Rey A, Hilario E. Recent advances in cochlear hair cell regeneration-A promising opportunity for the treatment of age-related hearing loss. Ageing Res Rev 2017; 36: 149-55.
  • 29. Budenz CL, Wong HT, Swiderski DL, Shibata SB, Pfingst BE, Raphael Y. Differential effects of AAV.BDNF and AAV.Ntf3 in the deafened adult guinea pig ear. Sci Rep 2015; 5: 8619.
  • 30. Jiao Y, Palmgren B, Novozhilova E, Englund Johansson U, Spieles-Engemann AL, Kale A, et al. BDNF increases survival and neuronal differentiation of human neural precursor cells cotransplanted with a nanofiber gel to the auditory nerve in a rat model of neuronal damage. Biomed Res Int 2014; 2014: 356415.
  • 31. Ramekers D, Versnel H, Grolman W, Klis SF. Neurotrophins and their role in the cochlea. Hear Res 2012; 288(1-2): 19-33.
  • 32. Li L, Chao T, Brant J, O’Malley B Jr, Tsourkas A, Li D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv Drug Deliv Rev 2017; 108: 2-12.
  • 33. Yamamoto T, Yuki S, Watanabe T, Mitsuka M, Saito KI, Kogure K. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Brain Res 1997; 762(1-2): 240-2.
  • 34. Takemoto T, Sugahara K, Okuda T, Shimogori H, Yamashita H. The clinical free radical scavenger, edaravone, protects cochlear hair cells from acoustic trauma. Eur J Pharmacol 2004; 487(1-3): 113-6.
  • 35. Gao G, Liu Y, Zhou CH, Jiang P, Sun JJ. Solid lipid nanoparticles loaded with edaravone for inner ear protection after noise exposure. Chin Med J (Engl) 2015; 128(2): 203-9.
  • 36. Surovtseva EV, Johnston AH, Zhang W, Zhang Y, Kim A, Murakoshi M, et al. Prestin binding peptides as ligands for targeted polymersome mediated drug delivery to outer hair cells in the inner ear. Int J Pharm 2012; 424(1-2): 121-7.
  • 37. Dabdoub A, Nishimura K. Cochlear Implants Meet Regenerative Biology: State of the Science and Future Research Directions. Otol Neurotol 2017; 38(8): e232-e236.
  • 38. Pinyon JL, Tadros SF, Froud KE, Y Wong AC, Tompson IT, Crawford EN, et al. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med 2014; 6(233): 233ra54.
  • 39. Browne CJ, Pinyon JL, Housley DM, Crawford EN, Lovell NH, Klugmann M, Housley GD. Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer. Gene Ther 2016; 23(4): 369-79.
  • 40. Chen W, Jongkamonwiwat N, Abbas L, Eshtan SJ, Johnson SL, Kuhn S, et al. Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature 2012; 490(7419): 278-82.
  • 41. Abbas L, Rivolta MN. Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: A simple model to study hair cell loss and regeneration. Hear Res 2015; 325: 12-26.
  • 42. Moser T. Optogenetic stimulation of the auditory pathway for research and future prosthetics. Curr Opin Neurobiol 2015; 34: 29-36.
  • 43. Jeschke M, Moser T. Considering optogenetic stimulation for cochlear implants. Hear Res 2015; 322: 224-34.
  • 44. Liu YH, Ke XM, Qin Y, Gu ZP, Xiao SF. Adeno-associated virus-mediated Bcl-xL prevents aminoglycoside-induced hearing loss in mice. Chin Med J (Engl) 2007; 120(14): 1236-40.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-62d0a205-6b51-4ec5-9bfc-079f5b54f597
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.