Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 8 | 2 | 84-89

Article title

Adiponektyna i leptyna a udar niedokrwienny mózgu

Content

Title variants

EN
Adiponectin and leptin in ischemic stroke

Languages of publication

EN PL

Abstracts

EN
Abdominal obesity becomes very significant health’s problem, especially because it is connected with pathogenesis of cardiovascular diseases. Adipose tissue is not only a store of excess energy but a hormonally active system too. The substances produced by adipose tissue are adipocytokines. Two of them are leptin and adiponectin. Adiponectin levels are inversely related to the adiposity degree, despite of adipose tissue is only source of it. concentrations of adiponectin have been reported to be decreased in patients with coronary artery diseases, type II diabetes mellitus, hypertensions and dyslipidemia patients in some insulin resistant states. It takes part in processes regulate glucose and lipid metabolism and it has anti-inflammatory and antiatherogenic properties. Adiponectin has a potential protective ability towards to cardiovascular diseases. Positive correlation with degree of adiposity has been reported for leptin – hormone involved in the regulation of food intake and energy expenditure. Leptin exerts many potentially atherogenic effects. It has been reported to influence on arterial hypertension, endothelial dysfunction, platelet aggregation, insulin resistant and activation of sympathetic system. In this way it can play very important role in development of stroke. Recent studies suggest that adiponectin and leptin may play an important role in obesity-associated cerebrovascular diseases. There is still too little evidence to say that these two hormones are independent marks of ischemic stroke and confirm their role in stroke pathogenesis.
PL
Otyłość brzuszna staje się coraz istotniejszym problemem zdrowotnym, głównie ze względu na związaną z nią koincydencję rozwoju chorób sercowo-naczyniowych. Tkanka tłuszczowa jest nie tylko źródłem zapasów energii, ale również hormonalnie czynnym systemem. Substancje wydzielane przez komórki tkanki tłuszczowej to adipocytokiny, do których zaliczamy między innymi leptynę i adiponektynę. Pomimo iż tkanka tłuszczowa jest jedynym źródłem adiponektyny, paradoksalnie jej stężenie w otyłości ulega obniżeniu. Ponadto niższe stężenia wykazano u chorych z chorobą niedokrwienną serca, cukrzycą typu II, nadciśnieniem tętniczym i dyslipidemią, czyli w stanach prawdopodobnej insulinooporności. Adiponektyna bierze udział w procesach usprawniających metabolizm glukozy i lipidów oraz wykazuje działanie przeciwzapalne i przeciwmiażdżycowe, a więc i potencjalnie ochronne działanie wobec chorób sercowo-naczyniowych. Ze wzrostem zgromadzonej tkanki tłuszczowej pozytywnie koreluje poziom leptyny, hormonu uczestniczącego w regulacji poboru pożywienia i wykorzystania energii. Leptyna wykazuje wiele potencjalnie proaterogennych właściwości. Poprzez między innymi wpływ na ciśnienie krwi, układ fibrynolityczny, funkcje śródbłonka, agregację płytek, oporność na insulinę oraz aktywację układu sympatycznego może odgrywać istotną rolę w rozwoju niedokrwiennego udaru mózgu. Badania sugerują, że adiponektyna i leptyna mogą stanowić ogniwo łączące otyłość z chorobami naczyniowymi OUN. Wciąż jednak istnieje zbyt mało danych, by uznać oba hormony za niezależne markery wystąpienia udaru niedokrwiennego mózgu oraz potwierdzić ich rolę w jego patogenezie.

Discipline

Year

Volume

8

Issue

2

Pages

84-89

Physical description

Contributors

author
  • WSS im. M. kopernika, ul. Pabianicka 62, 93-513 Łódź, tel.: 042 689 53 61
  • II katedra chorób Układu Nerwowego UM w Łodzi

References

  • 1. Grundy S.M., Cleeman J.I., Daniels S.R. i wsp.; American Heart Association; National Heart, Lung, and Blood Institute: diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. circulation 2005; 112: 2735-2752.
  • 2. Zhang Y., Proenca R, Maffei M. i wsp.: Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432.
  • 3. Hu E., Liang P, Spiegelman B.M.: AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. chem. 1996; 271: 10697-10703.
  • 4. Maeda Κ., Okubo Κ., Shimomura I. i wsp.: cDNA cloning and expression of a novel adipose specific collagenlike factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. commun. 1996; 221: 286-289.
  • 5. Nakano Y., Tobe T, choi-Miura N.H. i wsp.: Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 1996; 120: 803-812.
  • 6. Fruebis J., Tsao T.S., Javorschi S. i wsp.: Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 2001; 98: 2005-2010.
  • 7. Spranger J., Mohlig M., Wegewitz U. i wsp.: Adiponectin is independently associated with insulin sensitivity in women with polycystic ovary syndrome. clin. Endocrinol. (Oxf.) 2004; 61: 738-746.
  • 8. Scherer PE., Williams S., Fogliano M. i wsp.: A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. chem. 1995; 270: 26746-26749.
  • 9. Schober F., Neumeier M., Weigert J. i wsp.: Low molecular weight adiponectin negatively correlates with the waist circumference and monocytic IL-6 release. Biochem. Biophys. Res. Commun. 2007; 361: 968-973.
  • 10. Lara-Castro C., Luo N., Wallace P i wsp.: Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes 2006; 55: 249-259.
  • 11. Yamauchi T, Kamon J., Ito Y. i wsp.: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762-769.
  • 12. Arita Y., Kihara S., Ouchi N. i wsp.: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 1999; 257: 79-83.
  • 13. Weyer C., Funahashi T, Tanaka S. i wsp.: Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 2001; 86: 1930-1935.
  • 14. Hotta Κ., Funahashi T, Arita Y. i wsp.: Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1595-1599.
  • 15. Matsubara M., Maruoka S., Katayose S.: Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur. J. Endocrinol. 2002; 147: 173-180.
  • 16. Garvey W.T., Kwon S., Zheng D. i wsp.: Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 2003; 52: 453-462.
  • 17. Ouchi N., Kihara S., Arita Y. i wsp.: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999; 100: 2473-2476.
  • 18. Matsuda M., Shimomura I., Sata M. i wsp.: Role of adiponectin in preventing vascular stenosis. The missing link of adipovascular axis. J. Biol. Chem. 2002; 277: 37487-37491.
  • 19. Okamoto Y., Arita Y., Nishida M. i wsp.: An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm. Metab. Res. 2000; 32: 47-50.
  • 20. Iglseder B., Mackevics V, Stadlmayer A. i wsp.: Plasma adiponectin levels and sonographic phenotypes of sub-clinical carotid artery atherosclerosis: data from the SAPHIR study. Stroke 2005; 36: 2577-2582.
  • 21. Pilz S., Sargsyan Κ., Mangge H.: Hypoadiponectinemia as a risk factor for atherosclerosis? Stroke 2006; 37: 1642.
  • 22. van Popele N.M., Grobbee D.E., Bots M.L. i wsp.: Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke 2001; 32: 454-460.
  • 23. Araki T, Emoto M., Yokoyama H. i wsp.: The association of plasma adiponectin level with carotid arterial stiffness. Metabolism 2006; 55: 587-592.
  • 24. Kamada Y., Tamura S., Kiso S. i wsp.: Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 2003; 125: 1796-1807.
  • 25. Davies M.J., Gordon J.L., Gearing A.J. i wsp.: The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 1993; 171: 223-229.
  • 26. Yokota T, Oritani K., Takahashi I. i wsp.: Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000; 96: 1723-1732.
  • 27. Chen M.P, Tsai J.C., Chung F.M. i wsp.: Hypoadiponectinemia is associated with ischemic cerebrovascular disease. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 821-826.
  • 28. Efstathiou S.P, Tsioulos D.I., Tsiakou A.G. i wsp.: Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke 2005; 36: 1915-1919.
  • 29. Turton M.D., O’Shea D., Gunn I. i wsp.: A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379: 69-72.
  • 30. Arase K., York D.A., Shimizu H. i wsp.: Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am. J. Physiol. 1988; 255: E255-E259.
  • 31 Muglia L., Jacobson L., Dikkes P, Majzoub J.A.: Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 1995; 373: 427-432.
  • 32. Qu D., Ludwig D.S., Gammeltoft S. i wsp.: A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 1996; 380: 243-247.
  • 33. Caro J.F., Sinha M.K., Kolaczynski J.W i wsp.: Leptin: the tale of an obesity gene. Diabetes 1996; 45: 1455-1462.
  • 34. Campfield L.A., Smith FJ., Burn P: The Ob protein (leptin) pathway - a link between adipose tissue mass and central neural networks. Horm. Metab. Res. 1996; 28: 619-632.
  • 35. Oda A., Taniguchi T, Yokoyama M.: Leptin stimulates rat aortic smooth muscle cell proliferation and migration. Kobe J. Med. Sci. 2001; 47: 141-150.
  • 36. Zeidan A., Purdham D.M., Rajapurohitam V. i wsp.: Leptin induces vascular smooth muscle cell hypertrophy through angiotensin II- and endothelin-1-dependent mechanisms and mediates stretch-induced hypertrophy. J. Pharmacol. Exp. Ther. 2005; 315: 1075-1084.
  • 37. Barton M., Carmona R., Ortmann J. i wsp.: Obesity-associated activation of angiotensin and endothelin in the cardiovascular system. Int. J. Biochem. Cell Biol. 2003; 35: 826-837.
  • 38. Quehenberger P., Exner M., Sunder-Plassmann R. i wsp.: Leptin induces endothelin-1 in endothelial cells in vitro. Circ. Res. 2002; 90: 711-718.
  • 39. Wolf G., Hamann A., Han D.C. i wsp.: Leptin stimulates proliferation and TGF- expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int. 1999; 56: 860-872.
  • 40. Porreca E., Di Febbo C., Vitacolonna E. i wsp.: Transforming growth factor-, levels in hypertensive patients: association with body mass index and leptin. Am. J. Hyper-tens. 2002; 15: 759-765.
  • 41. Ghosh J., Murphy M.O., Turner N. i wsp.: The role of transforming growth factor , in the vascular system. Car-diovasc. Pathol. 2005; 14: 28-36.
  • 42. Maingrette F., Renier G.: Leptin increases lipoprotein lipase secretion by macrophages: involvement of oxidative stress and protein kinase C. Diabetes 2003; 52: 2121-2128.
  • 43. O’Rourke L., Yeaman S.J., Shepherd PR.: Insulin and leptin acutely regulate cholesterol ester metabolism in macrophages by novel signaling pathways. Diabetes 2001; 50: 955-961.
  • 44. Li J., Thorne L.N., Punjabi N.M. i wsp.: Intermittent hypoxia induces hyperlipidemia in lean mice. Circ. Res. 2005; 97: 698-706.
  • 45. Nakata M., Yada T, Soejima N., Maruyama I.: Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes 1999; 48: 426-429.
  • 46. Ozata M., Avcu F., Durmus O. i wsp.: Leptin does not play a major role in platelet aggregation in obesity and leptin deficiency. Obes. Res. 2001; 9: 627-630.
  • 47. Giandomenico G., Dellas C., Czekay R.P i wsp.: The leptin receptor system of human platelets. J. Thromb. Haemost. 2005; 3: 1042-1049.
  • 48. Kimura K., Tsuda K., Baba A. i wsp.: Involvement of nitric oxide in endothelium-dependent arterial relaxation by leptin. Biochem. Biophys. Res. Commun. 2000; 273: 745-749.
  • 49. Naseem K.M.: The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 2005; 26: 33-65.
  • 50. Ciccone M., Vettor R., Pannacciulli N. i wsp.: Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. Int. J. Obes. Relat. Metab. Disord. 2001; 25: 805-810.
  • 51. Norata G.D., Raselli S., Grigore L. i wsp.: Leptin:adipo-nectin ratio is an independent predictor of intima media thickness of the common carotid artery. Stroke 2007; 38: 2844-2846.
  • 52. Sierra-Johnson J., Romero-Corral A., Lopez-Jimenez F. i wsp.: Relation of increased leptin concentrations to history of myocardial infarction and stroke in the United States population. Am. J. Cardiol. 2007; 100: 234-239.
  • 53. Soderberg S., Stegmayr B., Stenlund H. i wsp.: Leptin, but not adiponectin, predicts stroke in males. J. Intern. Med. 2004; 256: 128-136.
  • 54. Clegg D.J., Riedy C.A., Smith K.A. i wsp.: Differential sensitivity to central leptin and insulin in male and female rats. Diabetes 2003; 52: 682-687.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-613252b1-5696-48be-9c4a-e445e0c496d8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.