Preferences help
enabled [disable] Abstract
Number of results
2018 | 23 | 25 - 32
Article title


Title variants
Languages of publication
The applications of chitin are limited due to its insolubility in most organic solvents. The chemical modification of chitin to generate new bio-functional materials can bring more desirable properties. A concentration of 5% can be obtained. We have successfully prepared chitin fibres and spheres by dissolving chitin in 85% phosphoric acid in various coagulating agents and then regenerating it in 10% sodium hydroxide. The change in molecular structure was studied by Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology of different biomaterials was observed using scanning electron microscopy (SEM) and optical microscopy (OM).
25 - 32
Physical description
  • Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biała
  • Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biała
  • Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biała
  • [1] Rinaudo M.; (2006) Chitin and chitosan: properties and applications. Prog. Polym. Sci.31, (7), 603–632, DOI 10.1016/j.progpolymsci.2006.06.001
  • [2] Ding F. at al.; (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications, Nanoscale 6 9477–9493, DOI:10.1039/c4nr02814g
  • [3] P.K. Dutta, M.N.V. Ravikumar, J. Dutta, (2002) J. Macromol Sci.: Rev. Macromol. Chem. Phys. C42 307–353,
  • [4] Boerstoel H et al. (2001) Liquid crystalline solutions of cellulose in phosphoric acid, Polymer 42(17):7371-7379, DOI:10.1016/S0032-3861(01)00210-5
  • [5] Jaworska M. Gorak A.; (2016) Modification of chitin particles with chloride ionic liquids, Materials Letters 164, 341–343, DOI:10.1016/j.matlet.2015.10.157
  • [6] Prasada K et al.; (2009) Weak gel of chitin with ionic liquid, 1-allyl-3-methylimidazolium bromide, International Journal of Biological Macromolecules 45, 221–225, DOI:10.1016/j.ijbiomac.2009.05.004
  • [7] Vincendon M.; (1997) Regenerated chitin from phosphoric acid solutions, Carbohydrate Polymers 32, 233-237
  • [8] Tao Wu et al. (2016) Phosphoric acid-based preparing of chitin nanofibers and nanospheres, Cellulose, 23:477–491, DOI: 10.1007/s10570-015-0829-2
  • [9] Kaipeng Wang, Qi Liu.; (2014) Chemical structure analyses of phosphorylated chitosan Carbohydrate Research 386, 48–56, DOI: /10.1016/j.carres.2013.12.021
  • [10] Baby A.R. et al.; (2006) Colloids and Surfaces B: Biointerfaces 50, 61–65
  • [11] Cárdenas G., Cabrera G., Taboada E., Miranda S.P.; (2004) Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR, J. Appl. Polym. Sci. 93 (4) 1876–1885
  • [12] Kaya M., Baran T., Mentes A., Asaroglu M., Sezen G., Tozak K.O.; (2014) Extraction and characterization of a-chitin and chitosan from six different aquatic invertebrates, Food. Biophysics. 9 (2) 45–157.
  • [13] Chaussard G., Domard A.; (2004) New aspects of the extraction of chitin from squid pens, Biomacromolecules 5 (2) 559–564.
  • [14] Kaya M. et al.; (2014) Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsadecemlineata), Mater. Sci. Eng: C.45, 72–81.
  • [15] Kumirska al.; (2010) Application of spectroscopic methods for structural analysis ofchitin and chitosan. Marine Drugs, 8 (5), 1567–1636
  • [16] Bekiaris G. et al.; (2015) Waste Management 39, 45–5, ttp:// j.wasman.2015.02.029
  • [17] Huanling Wu et al.; (2018) Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials, Carbohydrate Polymers 180, 304–313, DOI: /10.1016/j.carbpol.2017.10.022
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.