Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2019 | 6 | 2 | 95-104

Article title

Zastosowanie nieinwazyjnych i inwazyjnych metod diagnostycznych do oceny skuteczności trzech preparatów sztucznych łez w leczeniu zespołu suchego oka

Content

Title variants

EN
The use of non-invasive and invasive diagnostic methods to evaluate the effectiveness of three artificial tear preparations in the treatment of dry eye syndrome

Languages of publication

PL

Abstracts

PL
Cel: Ocena skuteczności 3 powszechnie stosowanych preparatów sztucznych łez u pacjentów z objawami zespołu suchego oka. Materiał i metody: W 4-tygodniowym badaniu uczestniczyło 30 osób z objawami suchego oka. Badani w schemacie 1 : 1 : 1 otrzymywali: grupa 1. – dekspantenol 2% i hydroksypropylocelulozę 0,5%; grupa 2. – trehalozę 3% i hialuronian sodu 0,15%; grupa 3. – hialuronian sodu 0,24%. Badania wykonano przed rozpoczęciem leczenia i po 28 dniach. Zastosowano kwestionariusz OSDI wskaźnika choroby powierzchni oka, ocenę objawów subiektywnych, nieinwazyjne obrazowe badania diagnostyczne 2 wideokeratoskopami z dużą i małą czaszą projekcyjną, test Schirmera oraz badania w lampie szczelinowej z barwieniem fluoresceiną i zielenią lizaminy. W analizie statystycznej użyto testu t-Studenta dla prób zależnych. Wyniki: Wszystkie preparaty doprowadziły do poprawy OSDI. W grupie 1. redukcji uległy cztery, a w grupach 2. i 3. – dwa subiektywne objawy suchego oka (p < 0,05). Nieinwazyjny czas przerwania filmu łzowego (NIBUT) był znacząco dłuższy w grupach 1. i 3. (p < 0,05) jedynie w pomiarach wideokeratoskopem z małą czaszą. Tempo postępującego pogarszania się jakości powierzchni filmu łzowego po mrugnięciu uległo spowolnieniu tylko w grupie 1. (p < 0,05). Stopień barwienia rogówki fluoresceiną zmniejszył się we wszystkich grupach (p < 0,05). Nie zaobserwowano istotnych zmian w teście Schirmera, wysokości menisku łzowego i w NIBUT mierzonym wideokeratoskopem z dużą czaszą. Wnioski: Badane preparaty zmniejszyły subiektywne i obiektywne objawy zespołu suchego oka. Znacząco polepszyły komfort pacjenta i stan nabłonka rogówki. Poprawa stabilności filmu łzowego zależała od rodzaju kropli i metody badawczej.
EN
Objectives: The assessment of three commercially available artificial tear formulations for dry eye disease (DED) treatment. Material and methods: This 4-week, randomised prospective study enrolled 30 patients with DED symptoms. Patients received (in scheme 1 : 1 : 1): group 1 – dexpanthenol 2% and hydroxypropylcelulose 0.5%; group 2 – trehalose 3% and sodium hyaluronate 0.15%; group 3 – sodium hyaluronate 0.24%. All assessments were performed before and 28 days after treatment and included Ocular Surface Disease Index (OSDI), subjective symptoms, non-invasive imaging using a cone- and a bowl-type videokeratoscope, Schirmer test and slit lamp exam including fluorescein and lissamine green ocular surface staining. T-test was used for statistical analysis of the results. Results: All groups had significantly lower OSDI. Four subjective symptoms improved in group 1 and only two subjective symptoms improved in groups 2 and 3. Non-invasive break-up time (NIBUT) was significantly longer after treatment in groups 1 and 3 (p < 0.05). The ratio of tear film surface quality distortion was lower only in group 1 (p < 0.05). Corneal fluorescein staining was reduced in all groups after treatment (p < 0.05). There were no statistically significant changes in Schirmer test, tear meniscus height and NIBUT measured with a bowl-type videokeratoscope after treatment. Conclusions: All preparations reduced the subjective and objective symptoms of DED. The corneal epithelium and general subjective comfort improved regardless of used artificial tear formulation. Nonetheless, the tear film break-up time change depended on the diagnostic method and treatment type.

Discipline

Publisher

Journal

Year

Volume

6

Issue

2

Pages

95-104

Physical description

Contributors

  • Katedra Optyki i Fotoniki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
  • 1. Ośrodek Okulistyki Klinicznej SPEKTRUM we Wrocławiu. 2. Ośrodek Badawczo-Rozwojowy CREO we Wrocławiu
author
  • OFTALABS sp. z o.o.

References

  • 1. Craig JP, Nelson JD, Azar DT, et al. TFOS DEWS II Report Executive Summary. Ocul Surf 2017; 15: 802-812.
  • 2. Gulati S, Jain S. Ocular pharmacology of tear film, dry eye, and allergic conjunctivitis. Handb Exp Pharmacol 2017; 242: 97-118.
  • 3. Nakamura M, Hikida M, Nakano T, et al. Characterization of water retentive properties of hyaluronan. Cornea 1993; 12: 433-436.
  • 4. Gomes JA, Amankwah R, Powell-Richards A, et al. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br J Ophthalmol 2004; 88: 821-825.
  • 5. Cejka C, Kubinova S, Cejkova J. Trehalose in ophthalmology. Histol Histopathol 2019: 18082.
  • 6. Chen W, Zhang X, Liu M, et al. Trehalose protects against ocular surface disorders in experimental murine dry eye through suppression of apoptosis. Exp Eye Res 2009; 89: 311-318.
  • 7. Raczyńska K, Iwaszkiewicz-Bilikiewicz B, Stozkowska W, et al. Clinical evaluation of provitamin B5 drops and gel for postoperative treatment of corneal and conjuctival injuries. Klin Oczna 2003; 105: 175-178.
  • 8. Lee R, Yeo S, Tun Aung H, et al. A greement of noninvasive tear break-up time measurement between Tomey RT-7000 Auto Refractor-Keratometer and Oculus Keratograph 5M. Clin Ophthalmol 2016; 10: 1785-1790.
  • 9. Best N, Drury L, Wolffsohn JS. Clinical evaluation of the Oculus Keratograph. Contact Lens Anterior Eye 2012; 35: 171-174.
  • 10. Fuller DG, Potts K, Kim J. Noninvasive tear breakup times and ocular surface disease. Optom Vis Sci 2013; 90: 1086-1091.
  • 11. Schiffman RM, Christianson MD, Jacobsen G, et al. Reliability and validity of the Ocular Surface Disease Index. Arch Ophthalmol 2000; 118: 615-621.
  • 12. Whitcher JP, Shiboski CH, Shiboski SC, et al. A simplified quantitative method for assessing keratoconjunctivitis sicca from the Sjogren’s Syndrome International Registry. Am J Ophthalmol 2010; 149: 405-415.
  • 13. Szczesna-Iskander DH, Alonso-Caneiro D, Iskander DR. Objective Measures of Pre-lens Tear Film Dynamics versus Visual Responses. Optom Vis Sci 2016; 93: 872-880.
  • 14. Owsley C, Knoblauch K, Katholi C. When does visual aging begin? Invest Ophthalmol Visual Sci 1992; 33: 1414.
  • 15. Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt 2014; 34: 502-508.
  • 16. Maharana PK, Raghuwanshi S, Chauhan AK, et al. Comparison of the Efficacy of Carboxymethylcellulose 0.5%, Hydroxypropylguar Containing Polyethylene Glycol 400/Propylene Glycol, and Hydroxypropyl Methyl Cellulose 0.3% Tear Substitutes in Improving Ocular Surface Disease Index in Cases of Dry Eye. Middle East Afr J Ophthalmol 2017; 24: 202-206.
  • 17. Safarzadeh M, Azizzadeh P, Akbarshahi P. Comparison of the clinical efficacy of preserved and preservative-free hydroxypropyl methylcellulose-dextran-containing eyedrops. J Optom 2017; 10: 258-264.
  • 18. Moshirfar M, Pierson K, Hanamaikai K, et al. Artificial tears potpourri: a literature review. Clin Ophthalmol 2014; 8: 1419-1433.
  • 19. Proksch E, de Bony R, Trapp S, et al. Topical use of dexpanthenol: a 70th anniversary article. J Derm Treat 2017; 28: 1-8.
  • 20. Matsuo T. Trehalose protects corneal epithelial cells from death by drying. Br J Ophthalmol 2001; 85: 610-612.
  • 21. Aragona P, Colosi P, Rania L, et al. Protective Effects of Trehalose on the Corneal Epithelial Cells. ScientificWorldJournal 2014: 717835.
  • 22. Li J, Roubeix C, Wang Y, et al. Therapeutic efficacy of trehalose eye drops for treatment of murine dry eye induced by an intelligently controlled environmental system. Mol Vis 2012; 18: 317-329.
  • 23. Čejková J, Ardan T, Čejka C, et al. Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch Clin Exp Ophthalmol 2011; 249: 1185-1194.
  • 24. Salzillo R, Schiraldi C, Corsuto L, et al. Optimization of hyaluronan-based eye drop formulations. Carbohydrate Polymers 2016; 153: 275-283.
  • 25. Weigel PH, Baggenstoss BA. What is special about 200 kDa hyaluronan that activates hyaluronan receptor signaling? Glycobiology 2017; 27: 868-877.
  • 26. Oh T, Jung Y, Chang D, et al. Changes in the tear film and ocular surface after cataract surgery. Jpn J Ophthalmol 2012; 56: 113-118.
  • 27. Kohli P, Arya SK, Raj A, et al. Changes in ocular surface status after phacoemulsification in patients with senile cataract. Int Ophthalmol 2018; 39: 1-9.
  • 28. Sullivan BD, Whitmer D, Nichols KK, et al. Tear film osmolarity: determination of a referent for dry eye diagnosis. Invest Ophthalmol Vis Sci 2010; 47: 4309-15.
  • 29. Nichols KK, Mitchell GL, Zadnik K. The repeatability of clinical measurementsof dry eye. Cornea 2004; 23: 272-285.
  • 30. Wolffsohn JS, Arita R, Chalmers R, et al. TFOS DEWS II Diagnostic Methodology report. Ocul Surf 2017; 15: 539-574.
  • 31. Li N, Deng XG, He MF. Comparison of the Schirmer 1 test with and without topical anesthesia for diagnosing dry eye. Int J Opthalmol 2012; 5: 478-481.
  • 32. Downie LE. Automated tear film surface quality breakup time as a novel clinical marker for tear hyperosmolarity in dry eye disease. Invest Ophthalmol Vis Sci 2015; 56: 7260-7268.
  • 33. Lan W, Lin L, Yang X, et al. Automatic noninvasive tear breakup time (TBUT) and conventional fluorescent TBUT. Optom Vis Sci 2014; 91: 1412-1418.
  • 34. Llorens-Quintana C, Szczesna-Iskander DH, Iskander DR. Unified approach to tear film surface analysis with high-speed videokeratoscopy. J Opt Soc Am A 2019; 36: B15-B22.
  • 35. Wang M, Murthy PJ, Blades KJ, et al. Comparison of non-invasive tear film stability measurement techniques. Clin Exp Optom 2017; 101: 13-17.
  • 36. Szczesna-Iskander DH. Post-blink tear film dynamics in healthy and dry eyes during spontaneous blinking. Ocular Surf 2018; 16: 93- 100.
  • 37. Yokoi N, Georgiev GA. Tear film-oriented diagnosis and tear film-oriented therapy for dry eye based on tear film dynamics. Invest Ophthalmol Vis Sci 2018; 59: DES13–DES22.
  • 38. Abdelfattah NS, Dastiridou A, Sadda SV, et al. Noninvasive imaging of tear film dynamics in eyes with ocular surface disease. Cornea 2015; 34(10): S48-S52.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-5f9e9c72-cea6-41cf-a69b-01df36167b1b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.