Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 14 | 3 | 301–305

Article title

Comparison between bioelectrical impedance analysis and anthropometric indices in hypertensive patients

Content

Title variants

PL
Porównanie analizy bioimpedancyjnej ze wskaźnikami antropometrycznymi u chorych z nadciśnieniem tętniczym

Languages of publication

EN

Abstracts

EN
Aim: Obesity is one of the most crucial challenges of contemporary medicine. Bioelectrical impedance analysis is a useful tool to identify individuals with increased fat mass. However, the equipment is relatively expensive, especially compared to basic anthropometric methods. The aim of this study was to evaluate the relations between anthropometric indices and bioelectrical impedance analysis in patients with uncomplicated arterial hypertension. Material and methods: In 137 hypertensives the correlations between fat mass (absolute, FM; relative, %FM) and anthropometric parameters (body mass index, BMI; waist circumference, WC; waist-to-hip ratio, WHR; waist-to-height ratio, WHtR; body adiposity index, BAI; visceral adiposity index, VAI) were analysed. Results: Classic anthropometrics correlated well with bioimpedance indices of adipose tissue content: %FM vs. BAI (R = 0.77), WHtR (R = −0.54), BMI (R = 0.52), WC (R = 0.29); FM vs. BMI (R = 0.82), WC (R = 0.66), BAI (R = 0.58), VAI (R = 0.26), WHtR (R = 0.23), WHR (R = 0.19). In females BMI, WC and BAI showed the strongest correlations with adiposity. In males they were WHtR and WC. Conclusions: Some anthropometric measurements show good agreement with bioelectrical impedance analysis and can be considered a valid surrogate for body composition assessment in the case of its inaccessibility. In hypertensive women WC and BMI seem to be the most precise in the assessment of %FM, while in men WHtR and WC are more useful.
PL
Cel: Otyłość należy do głównych wyzwań współczesnej medycyny. Analiza bioimpedancyjna stanowi użyteczne narzędzie identyfikacji osób ze zwiększoną masą tkanki tłuszczowej. Niestety, sprzęt do analizy bioimpedancyjnej jest dość kosztowny, zwłaszcza w porównaniu z podstawowymi metodami antropometrycznymi. Celem pracy była ocena związku pomiędzy pomiarami antropometrycznymi a analizą bioimpedancyjną u pacjentów z niepowikłanym nadciśnieniem tętniczym. Materiał i metody: U 137 osób z nadciśnieniem tętniczym oceniono korelacje między ilością tkanki tłuszczowej (bezwzględnej, fat mass, FM; względnej, %FM) a parametrami antropometrycznymi (wskaźnik masy ciała, body mass index, BMI; obwód talii, waist circumference, WC; wskaźnik talia–biodra, waist-to-hip ratio, WHR; wskaźnik talia–wzrost, waistto-height ratio, WHtR; wskaźnik otłuszczenia ciała, body adiposity index, BAI; wskaźnik wisceralnej – trzewnej tkanki tłuszczowej, visceral adiposity index, VAI). Wyniki: Klasyczne pomiary antropometryczne korelowały z bioimpedancyjnymi wskaźnikami zawartości tkanki tłuszczowej: %FM vs BAI (R = 0,77), WHtR (R = −0,54), BMI (R = 0,52), WC (R = 0,29); FM vs BMI (R = 0,82), WC (R = 0,66), BAI (R = 0,58), VAI (R = 0,26), WHtR (R = 0,23), WHR (R = 0,19). U kobiet najsilniejszy związek z ilością tkanki tłuszczowej wykazywały BMI, WC i BAI, zaś u mężczyzn – WHtR i WC. Wnioski: Niektóre pomiary antropometryczne wykazują wysoką zgodność z analizą bioimpedancyjną i mogą być brane pod uwagę jako zastępcze wskaźniki oceny składu ciała w przypadku braku możliwości jej zastosowania. U kobiet z nadciśnieniem tętniczym najbardziej precyzyjne w ocenie %FM okazują się WC i BMI, podczas gdy u mężczyzn są to WHtR i WC.

Discipline

Year

Volume

14

Issue

3

Pages

301–305

Physical description

Contributors

  • Department of Cardiology and Internal Diseases, Military Institute of Medicine, Warsaw, Poland
  • Department of Cardiology and Internal Diseases, Military Institute of Medicine, Warsaw, Poland
  • Department of Cardiology and Internal Diseases, Military Institute of Medicine, Warsaw, Poland
  • Department of Cardiology and Internal Diseases, Military Institute of Medicine, Warsaw, Poland

References

  • 1. Hruby A, Hu FB: The epidemiology of obesity: a big picture. Pharmacoeconomics 2015; 33: 673–689.
  • 2. Ng M, Fleming T, Robinson M et al.: Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766–781.
  • 3. Stevens GA, Singh GM, Lu Y et al.; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index): National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr 2012; 10: 22.
  • 4. Kelly T, Yang W, Chen CS et al.: Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008; 32: 1431–1437.
  • 5. Wiltink J, Michal M, Wild PS et al.: Associations between depression and different measures of obesity (BMI, WC, WHtR, WHR). BMC Psychiatry 2013; 13: 223.
  • 6. Amato MC, Giordano C, Galia M et al.; AlkaMeSy Study Group: Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010; 33: 920–922.
  • 7. Bergman RN, Stefanovski D, Buchanan TA et al.: A better index of body adiposity. Obesity (Silver Spring) 2011; 19: 1083–1089.
  • 8. Lukaski HC, Johnson PE, Bolonchuk WW et al.: Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41: 810–817.
  • 9. Bera TK: Bioelectrical impedance methods for noninvasive health monitoring: a review. J Med Eng 2014; 2014: 381251.
  • 10. Ackmann JJ: Complex bioelectric impedance measurement system for the frequency range from 5Hz to 1MHz. Ann Biomed Eng 1993; 21: 135–146.
  • 11. Ackmann JJ, Seitz MA: Methods of complex impedance measurements in biologic tissue. Crit Rev Biomed Eng 1984; 11: 281–311.
  • 12. Cha K, Chertow GM, Gonzalez J et al.: Multifrequency bioelectrical impedance estimates the distribution of body water. J Appl Physiol (1985) 1995; 79: 1316–1319.
  • 13. Krzesiński P, Hałas K, Gielerak G et al.: [Cardiovascular risk and inflammatory markers in patients with hypertension]. Pol Merkur Lekarski 2015; 38: 70–76.
  • 14. Lohman TG, Roche AF, Martorell R: Anthropometric Standardization Reference Manual. Human Kinetics Books, Champaign, IL 1988: 3–8.
  • 15. Blaak E: Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 2001; 4: 499–502.
  • 16. Monda V, Salerno M, Fiorenzo M et al.: Role of sex hormones in the control of vegetative and metabolic functions of middleaged women. Front Physiol 2017; 8: 773.
  • 17. Freedman DS, Thornton JC, Pi-Sunyer FX et al.: The body adiposity index (hip circumference ÷ height1.5) is not a more accurate measure of adiposity than is BMI, waist circumference, or hip circumference. Obesity (Silver Spring) 2012; 20: 2438–2444.
  • 18. Jabłonowska-Lietz B, Wrzosek M, Włodarczyk M et al.: New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol Pol 2017; 75: 1185–1191.
  • 19. Tovar-Galvez MI, González-Jiménez E, Martí-García C et al.: Body composition in a population of school adolescents: a comparison of simple anthropometric methods and bioelectrical impedance. Endocrinol Diabetes Nutr 2017; 64: 424–431.
  • 20. Zeng Q, Dong SY, Sun XN et al.: Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz J Med Biol Res 2012; 45: 591–600.
  • 21. Amato MC, Guarnotta V, Giordano C: Body composition assessment for the definition of cardiometabolic risk. J Endocrinol Invest 2013; 36: 537–543.
  • 22. Yusuf S, Hawken S, Ounpuu S et al.; INTERHEART Study Investigators: Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 2005; 366: 1640–1649.
  • 23. Ruderman N, Chisholm D, Pi-Sunyer X et al.: The metabolically obese, normal-weight individual revisited. Diabetes 1998; 47: 699–713.
  • 24. de Simone G, Devereux RB, Kizer JR et al.: Body composition and fat distribution influence systemic hemodynamics in the absence of obesity: the HyperGEN Study. Am J Clin Nutr 2005; 81: 757–761.
  • 25. Bagi Z: Mechanisms of coronary microvascular adaptation to obesity. Am J Physiol Regul Integr Comp Physiol 2009; 297: R556–R567.
  • 26. Zoccali C, Postorino M, Marino C et al.; CREDIT Working Group: Waist circumference modifies the relationship between the adipose tissue cytokines leptin and adiponectin and all-cause and cardiovascular mortality in haemodialysis patients. J Intern Med 2011; 269: 172–181.
  • 27. Ashwell M, Gibson S: Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: analysis of data from the British National Diet and Nutrition Survey of adults aged 19–64 years. Obes Facts 2009; 2: 97–103.
  • 28. Corrêa MM, Thumé E, De Oliveira ER et al.: Performance of the waist-to-height ratio in identifying obesity and predicting noncommunicable diseases in the elderly population: a systematic literature review. Arch Gerontol Geriatr 2016; 65: 174–182.
  • 29. Amato MC, Giordano C: Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol 2014; 2014: 730827.
  • 30. Bozorgmanesh M, Hadaegh F, Azizi F: Predictive performance of the visceral adiposity index for a visceral adiposity-related risk: type 2 diabetes. Lipids Health Dis 2011; 10: 88.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-5c662618-21bb-4a0a-a191-45bc8b14e75b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.