Preferences help
enabled [disable] Abstract
Number of results
2018 | 93 | 30-39
Article title

Antibiotic resistance of bacteria and incidence of carbapenamase-coding genes blaPER and blaGES in isolates from wastewater treatment plants

Title variants
Languages of publication
The increase in number of antibiotic resistant bacteria poses a serious environmental and health problem. The development of microbial resistance is intensified by the widespread use of antibiotics in medicine, veterinary, farming and aquaculture. The wastewater treatment plants receiving the wastewater from hospitals, slaughterhouses, farms, pharmaceutical industry and houses can be potential places of spreading of antibiotic resistant genes. The molecular mechanisms of the bacterial resistance, including the horizontal transfer of antibiotic resistant genes and the presence of mobile genetic elements can be responsible for the increase in antibiotic resistance during wastewater treatment. The aim of this study was to analyze the phenomenon of bacterial resistance to selected β-lactam antibiotics (ESBL) by detecting the genes that determine this resistance. The PCR method was used to analyze the occurrence of two genes: blaPER and blaGES in wastewater samples. It was revealed that the resistant/total bacteria ratio was significantly higher in the effluent compared with the influent wastewater. Genes blaPER and blaGES were isolated from several strains predominating in both aeration tank (5% and 20% respectively) and effluent wastewater (15% and 12% respectively).
Physical description
  • Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Str., 00-653 Warsaw, Poland
  • [1] T. Schwartz , W. Kohnen, B. Jansen, U. Obst, FEMS Microbiology Ecology 43(3) (2003) 325-35.
  • [2] A. Pruden, R. Pei, H. Storteboom, K.H. Carlson, Environmental Science & Technology 40 (2006) 7445-7450.
  • [3] Rodriguez-Mozaz S, Chamorro S, Marti E, Martia E, Huertaa B, Grosa M, Sànchez-Melsióa A, Borregoa CM, Barcelóa D, Balcázar JL, Water Research 69 (2015) 234-242.
  • [4] K. Kümmerer, A. al-Ahmad, V. Mersch-Sundermann, Chemosphere 40 (7) (2000) 701-10.
  • [5] Y.Yang, B. Li, F. Ju, T. Zhang, Environmental Science & Technology 47 (18) (2013) 10197-10205.
  • [6] A. R. Burmeister, Evolution, Medicine, and Public Health (2015) 193-194.
  • [7] NT. Trung, TT. Hien, TT. Huyen, DT. Quyen, MT Binh , PQ Hoan, CG. Meyer, TP. Velavan, H. Song le, Annals of Clinical Microbiology and Antimicrobials (2015) 14 23.
  • [8] K. Wolska, B. Kot, M. Piechota, A. Frankowska. Advances in Hygiene and Experimental Medicine 67 (2013) 1300-1311.
  • [9] P. Bogaerts, T. Naas, F. El Garch, G. Cuzon, A. Deplano, T. Delaire, T. Huang, B. Lissoir, P. Nordmann, Y. Glupczynski, Antimicrobial Agents and Chemotherapy 54 (11) (2010) 4872-4878.
  • [10] G. Celenza, C. Pellegrini, M. Caccamo, B. Segatore, G. Amicosante, M. Perilli, Journal of Antimicrobial Chemotherapy 57 (2006) 975-978.
  • [11] IK. Bae, SJ. Jang, J. Kim, SH. Jeong, B. Cho, K. Lee, Antimicrobial Agents and Chemotherapy 55 (3) (2011) 1305-1307.
  • [12] A. Opuş, T. Yıldırım, A. Birinci, B. Durupınar, Biomedical Research 28 (6) (2017) 2689-2695.
  • [13] A. Namysłowska, A.E. Laudy, S. Tyski, Postepy Mikrobiologii 54 (4) (2015) 392-406.
  • [14] L. Poirel, A. Carrër, JD. Pitout, P. Nordmann, Antimicrobial Agents and Chemotherapy (2009) Jun, 53(6) 2492-2498.
  • [15] I. Bueno, J. Williams-Nguyen, H. Hwang, JM. Sargeant, AJ. Nault, RS. Singer R, Zoonoses Public Health 65(1) (2018)162-184.
  • [16] LK. Zou , LW. Li, X. Pan, GB. Tian, Y. Luo, Q. Wu, B. Li, L. Cheng, JJ. Xiao, S. Hu, Y. Zhou, YJ. Pang, World Journal of Microbiology and Biotechnology 28 (5) (2012) 1891-1899.
  • [17] RA. Bonnin, P. Nordmann, A. Potron, H. Lecuyer, JR. Zahar, L. Poirel, Antimicrobial Agents and Chemotherapy 55 (1) (2011) 349-354
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.