Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Issue

Pages

1-64

Physical description

Contributors

author

- Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria

author

- Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria

author

- Faculty of Military Science, Stellenbosch University, Saldanha, South Africa

References

- [1] E. Schmidt and W. Beckmann. Das temperatur-und geschwindigkeitsfeld vor einer wärme abgebenden senkrecher platte bei natürelicher convention. Tech. Mech. U. Themodynamik, Bd. 1(10) (1930), 341-349; cont. Bd. 1(11) (1930), 391- 406.
- [2] S. Ostrach, An analysis of laminar free-convection ﬂow and heat transfer about a ﬂat plate parallel to the direction of the generating body force, NACA Report, 1111, 1953.
- [3] E.M. Sparrow and J.L. Gregg, Laminar free convection from a vertical plate with uniform surface heat flux, Trans. A.S.M.E. 78 (1956) 435-440.
- [4] E.J. Lefevre, Laminar free convection from a vertical plane surface, 9th Intern. Congress on Applied Mechanics, Brussels, paper I, 168 (1956).
- [5] E.M. Sparrow and J.L. Gregg, Similar solutions for free convection from a nonisothermal vertical plate, Trans. A.S.M.E. 80 (1958) 379-386.
- [6] K. Stewartson and L.T. Jones, The heated vertical plate at high Prandtl number, J. Aeronautical Sciences 24 (1957) 379-380.
- [7] H.K. Kuiken, An asymptotic solution for large Prandtl number free convection, J. Engng. Math. 2 (1968) 355-371.
- [8] H.K. Kuiken, Free convection at low Prandtl numbers, J. Fluid Mech. 37 (1969) 785-798.
- [9] S. Eshghy, Free-convection layers at large Prandtl number, J. Applied Math. and Physics 22 (1971) 275 -292.
- [10] S. Roy, High Prandtl number free convection for uniform surface heat flux, Trans A.S.M.E.J. Heat Transfer 95 (1973) 124-126.
- [11] H.K. Kuiken and Z. Rotem, Asymptotic solution for the plume at very large and small Prandtl numbers, J. Fluid Mech. 45 (1971) 585-600.
- [12] T.Y. Na, I.S. Habib, Solution of the natural convection problem by parameter diﬀerentiation, Int. J. Heat Mass Transfer 17 (1974) 457–459.
- [13] J.H. Merkin, A note on the similarity solutions for free convection on a vertical plate, J. Engng. Math. 19 (1985) 189-201.
- [14] J.H. Merkin, I. Pop, Conjugate free convection on a vertical surface, Int. J. Heat Mass Transfer 39 (1996) 1527–1534.
- [15] F. M. Ali, R. Nazar, and N. M. Arifin, Numerical investigation of free convective boundary layer in a viscous fluid, The American Journal of Scientific Research, no. 5, pp. 13–19, 2009.
- [16] S. S. Motsa, S. Shateyi, and Z. Makukula, Homotopy analysis of free convection boundary layer flow with heat and mass transfer, Chemical Engineering Communications vol. 198, no.6, pp. 783–795, 2011.
- [17] S. S. Motsa, Z. G. Makukula and S. Shateyi. Spectral Local Linearisation Approach for Natural Convection Boundary Layer Flow. Mathematical Problems in Engineering, Volume 2013 (2013), Article ID 765013, 7 pages.
- [18] A.R. Ghotbi, H. Bararnia,G. Domairry,and A. Barari, Investigation of a powerful analytical method into natural convection boundary layer flow, Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2222–2228, 2009.
- [19] S. Mosayebidorcheh, T. Mosayebidorcheh. Series solution of convective radiative conduction equation of the nonlinear fin with temperature dependent thermal conductivity. International Journal of Heat and Mass Transfer 55 (2012), 6589-6594.
- [20] M. Sheikholeslami. CVFEM for magnetic nanofluid convective heat transfer in a porous curved enclosure. The European Physical Journal Plus, 2016, 131:413
- [21] M. Sheikholeslami and Davood Domairry Ganji. Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method. First edition, Elsevier.
- [22] M. Sheikholeslami. Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer, First edition, Elsevier.
- [23] M. Sheikholeslami. Numerical study of MHD Natural convection liquid metal flow and heat transfer in a wavy enclosure using CVFEM. Heat Transfer Research, 48 (2017), 121-138
- [24] S. Mosayebidorcheh, M. Rahimi-Gorji, D. D. Ganji, T. Moayebidorcheh, O. Pourmehran, M. Biglarian. Transient thermal behavior of radial fins of rectangular, triangular and hyperbolic profiles with temperature-dependent properties using DTM-FDM, Journal of Central South University 24 (3), 675-682.
- [25] S. Mosayebidorcheh, Masoud Farzinpoor, D.D. Ganji. Transient thermal analysis of longitudinal ﬁns with internal heat generation considering temperature-dependent properties and different ﬁn proﬁles, Energy Conversion and Management 86 (2014) 365–370.
- [26] S. Mosayebidorcheh, M. M. Rashidi, T. Moayebidorcheh. Analytical solution of the steady state condensation film on the inclined rotating disk by a new hybrid method, Scientific Research and Essays 9 (12), 557-565.
- [27] S. Mosayebidorcheh, M. M. Vatani, D. D. Ganji, T. Moayebidorcheh Investigation of the viscoelastic flow and species diffusion in a porous channel with high permeability, Alexandria Engineering Journal 53 (4), 779-785.
- [28] S. Mosayebidorcheh and T. Moayebidorcheh Series solution of convective radiative conduction equation of the nonlinear fin with temperature dependent thermal conductivity, International Journal of Heat and Mass Transfer 55 (2012) 6589-6594.
- [29] S. Mosayebidorcheh. Analytical Investigation of the Micropolar Flow through a Porous Channel with Changing Walls, Journal of Molecular Liquids 196 (2014) 113–119.
- [30] M. Hatami a, S. Mosayebidorcheh, D. Jing, Thermal performance evaluation of alumina-water nanoﬂuid in an inclined direct absorption solar collector (IDASC) using numerical method, Journal of Molecular Liquids 231 (2017) 632–639.
- [31] S. Mosayebidorcheh, Solution of the Boundary Layer Equation of the Power-Law Pseudoplastic Fluid Using Differential Transform Method, Mathematical Problems in Engineering, Volume 2013, Article ID 685454, 8 pages, 2013.
- [32] S Mosayebidorcheh, M Hatami, DD Ganji, T Mosayebidorcheh, SM Mirmohammadsadeghi, Investigation of Transient MHD Couette flow and Heat Transfer of Dusty Fluid with Temperature-Dependent properties, Journal of Applied Fluid Mechanics, 8(4) (2015) 921-929.
- [33] M. Sheikholeslami, S.A. Shehzad. CVFEM for influence of external magnetic source on Fe3O4-H2O nanofluid behavior in a permeable cavity considering shape effect. International Journal of Heat and Mass Transfer, Volume 115, Part A, (2017), 180-191
- [34] M. Sheikholeslami, S.A. Shehzad Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. International Journal of Heat and Mass Transfer, 113 (2017) 796-805
- [35] M. Sheikholeslami, M. Seyednezhad. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. International Journal of Heat and Mass Transfer, 114 (2017) 1169-1180
- [36] M. Sheikholeslami, H. B. Rokni. Simulation of nanofluid heat transfer in presence of magnetic field: A review. International Journal of Heat and Mass Transfer, 115, Part B, (2017) 1203-1233
- [37] M. Sheikholeslami, T. Hayat, A. Alsaedi. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. International Journal of Heat and Mass Transfer, 115, Part A, (2017) 981-991
- [38] M. Sheikholeslami, Houman B. Rokni. Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. International Journal of Heat and Mass Transfer, 114 (2017) 517-526
- [39] M. Sheikholeslami, M.K. Sadoughi. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. International Journal of Heat and Mass Transfer, 116 (2018) 909-919
- [40] M. Sheikholeslami, Mohammadkazem Sadoughi. Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. International Journal of Heat and Mass Transfer, 113 (2017) 106-114
- [41] M. Sheikholeslami, M.M. Bhatti. Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 111 (2017) 1039-1049
- [42] M. Sheikholeslami, M.M. Bhatti. Active method for nanofluid heat transfer enhancement by means of EHD. International Journal of Heat and Mass Transfer, 109 (2017) 115-122
- [43] M. Sheikholeslami, Houman B. Rokni. Nanofluid two phase model analysis in existence of induced magnetic field. International Journal of Heat and Mass Transfer, 107 (2017) 288-299
- [44] M. Sheikholeslami, S.A. Shehzad. Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. International Journal of Heat and Mass Transfer, 106 (2017) 1261-1269
- [45] M. Sheikholeslami, T. Hayat, A. Alsaedi. Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 108, Part B (2017) 1870-1883
- [46] M. Sheikholeslami, T. Hayat, A. Alsaedi. Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. International Journal of Heat and Mass Transfer, 106 (2017) 745-755
- [47] M. Sheikholeslami, T. Hayat, A. Alsaedi, S. Abelman. Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity. International Journal of Heat and Mass Transfer, 108, Part B (2017) 2558-2565
- [48] J.K. Zhou. Differential Transformation and Its Applications for Electrical Circuits. Huazhong University Press, Wuhan, China (1986) (in Chinese).
- [49] L.T. Yu, C.K. Chen, The solution of the Blasius equation by the diﬀerential transformation method, Math. Comput. Modell. 28 (1998) 101–111.
- [50] B.L. Kuo, Thermal boundary-layer problems in a semi-inﬁnite ﬂat plate by the diﬀerential transformation method, Appl. Math. Comput. 153 (2004) 143–160.
- [51] B. L. Kuo. Application of the diﬀerential transformation method to the solutions of the free convection problem. Applied Mathematics and Computation 165 (2005) 63–79.
- [52] M. M. Rashidi, N. Laraqi, S. M. Sadri. A Novel Analytical Solution of Mixed Convection about an Inclined Flat Plate Embedded in a Porous Medium Using the DTM-Pade, International Journal of Thermal Sciences, 49 (2010), 12, 2405-2412.
- [53] N. Casson, Rheology of Dispersed System, vol.84, Pergamon Press, Oxford, UK, 1959.
- [54] R. K. Dash, K. N. Mehta, and G. Jayaraman, Casson fluid flow in a pipe filled with a homogeneous porous medium. International Journal of Engineering Science, vol.34, no.10, pp. 1145–1156, 1996.
- [55] H.I. Andersson and B.S. Dandapat, Flow of a power-law fluid over a stretching sheet. Applied Analysis of Continuous Media, vol. 1, no. 339, 1992.
- [56] M. Sajid, I. Ahmad, T. Hayat and M. Ayub, Unsteady flow and heat transfer of a second grade fluid over a stretching sheet. Communications in Nonlinear Science and Numerical Simulation, vol.14, no.1, pp. 96–108, 2009.
- [57] N. T. M. Eldabe and M. G. E. Salwa, Heat transfer of mhd non-Newtonian Casson fluid flow between two rotating cylinder. Journal of the Physical Society of Japan, vol. 64, p. 4164, 1995.
- [58] S. Nadeem, R. L. Haq, N. S. Akbar, and Z. H. Khan, MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alexandria. Engineering Journal, Vol. 52, pp. 577582, (2013).
- [59] A. Raptis, C. Perdikis. Viscoelastic ﬂow by the presence of radiation. Zeitschrift für Angewandte Mathematik und Mechanik 1998; 78: 277–9
- [60] M. A. Seddeek. Effects of radiation and variable viscosity on a MHD free convection ﬂow past a semi-inﬁnite ﬂat plate with an aligned magnetic ﬁeld in the case of unsteady ﬂow. Int. J. Heat Mass Transfer 2002; 45: 931–5
- [61] F. Mabood, M. Imtiaz, A. Alsaedi, T. Hayat. Unsteady convective boundary layer ﬂow of Maxwell ﬂuid with nonlinear thermal radiation: A Numerical study. Int. J. Nonlinear Sci. Num. Simul. 2016; 17: 221–9
- [62] T. Hayat, T. Muhammad, A. Alsaedi, M. S. Alhuthali. Magnetohydrodynamic threedimensional ﬂow of viscoelastic nanoﬂuid in the presence of nonlinear thermal radiation. J. Magn. Magn. Mater. 2015; 385: 222–9
- [63] M. Farooq, M.I., Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan. MHD stagnation point ﬂow of viscoelastic nanoﬂuid with non-linear radiation effects. J. Mol. Liq. 2016; 221, 1097–103
- [64] S. A. Shehzad, Z. Abdullah, A. Alsaedi, Abbasi FM, Hayat T. Thermally radiative three-dimensional ﬂow of Jeffrey nanoﬂuid with internal heat generation and magnetic ﬁeld. J. Magn. Magn. Mater. 2016; 397: 108–14
- [65] N. Casson: A ﬂow equation for the pigment oil suspension of the printing ink type. In: Rheology of Disperse Systems, 84-102. Pergamon, New York (1959).
- [66] N. S. Akbar and A. W. Butt. Ferro-magnetic effects for peristaltic flow of Cu-water nanofluid for different shapes of nano-size particles. Appl. Nanosci. 6 (2016) 379-385.
- [67] M. Sheikholesmi and M. M. Bhatti. Free convection of nanofluid in the presence of constant magnetic field considering shape effects of nanoparticles. International Journal of Heat and Mass Transfer, 111 (2017) 1039-1049.
- [68] R. Ul Haq, S. Nadeem, Z.H. Khan, N.F.M. Noor, Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes, Physica B, 457 (2015) 40–47.
- [69] L. D. Talley, G. L. Pickard, W. J. Emery, J. H. Swift, Descriptive Physical Oceanography, Physical Properties of Sea Water, sixth ed., Elsevier Ltd, 2011, pp. 29–65.
- [70] M. Pastoriza-Gallego, L. Lugo, J. Legido, M. Piñeiro, Thermal conductivity and viscosity measurements of ethylene glycol-based Al 2O3 nanofluids, Nanoscale Res Lett. 6 (221) 1–11.
- [71] S. Aberoumand and A. Jafarimoghaddam, Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid, Journal of the Taiwan Institute of Chemical Engineers, 71 (2017) 315–322.
- [72] G.A. Baker, P. Graves-Morris, Pade Approximants, Cambridge U.P., 1996.
- [73] H. K. Kuiken. On boundary layers in fluid mechanics that decay algebraically along stretches of wall that are not vanishingly small. IMA Journal of Applied Mathematics, 27(4) (1981) 387–405.
- [74] W. Daungthongsuk and Somchai Wongwises, A critical review of convective heat transfer of nanofluids, Renewwable and Sustainable Energy reviews, 11 (2007) 797-817.
- [75] S. Kakac and Anchasa Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids, International Journal of Heat and Mass Transfer 52 (2009) 3187-3196.
- [76] Y. Ding, Haisheng Chen, Yurong He, Alexei Lapkin, Mahboubeh Yeganeh, Lidija Siller and Yuriy V. Butenko, Forced convective heat transfer of nanofluids, Advanced Powder Technology, 18 (2007) 813-824.
- [77] L. Godson Asirvatham, B. Raja, D. Mohan Lal and Somchai Wongwises, Convective heat transfer of nanofluids with correlations, 9 (2011) 626-631.
- [78] C. Zhang, L. Zheng, X. Zhang and G. Chen. MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Applied Mathematical Modelling, 39 (2015) 165-181.
- [79] G.S. Seth, S.M. Hussain and S. Sarkar, Hydromagnetic natural convection flow with heat and mass transfer of a chemically reacting and heat absorbing fluid past an accelerated moving vertical plate with ramped temperature and ramped surface concentration through a porous medium, Journal of the Egyptain Mathematical Society, 23 (2015) 197-207.
- [80] D. Srinivasacharya and G. Swamy Reddy, Chemical reaction and radiation effects on mixed convection heat and mass transfer over a vertical plate in power-law fluid saturated porous medium, Journal of the Egyptian Mathematical Society, 24 (2016) 108-115.
- [81] F.S. Ibrahim, A.M. Elaiw and A.A. Bakr, Effect of the chemical reaction and radiation absorption on the unsteady MHD free convection flow past a semi-infinite vertical permeable moving plate with heat source and suction, Nonlinear Science and Numerical Simulation, 13 (2008) 1056-1066.
- [82] K. Das, Pinaki Ranjan Duari and Prabir Kumar Kundu, Nanofluid over an unsteady stretching surface in presence of thermal radiation, Alexandriia Engineering Journal, 53 (2014) 737-745.
- [83] R.S. Tripathy, G.C. Dash, S.R. Mishra and S. Baag, Chemical reaction effects on MHD free convective surface over a moving vertical plate through porous medium. Alexandria Engineering Journal, 54 (2015) 673-679.
- [84] P.M. Patil and P.S. Kulkarni, Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation, International Journal of Thermal Science, 47 (2008) 1043-1054.
- [85] M. Mehdi Rashidi, B. Rotami, N. Freidoonimehr and S. Abbasbandy, Free convective heat and mass transfer for MHD Fluid flow over a permeable vertical stretching sheet in the presence of the radiation and Buyancy effects, Ain Shams Engineering Journal, 5 (2014) 901-912.
- [86] S. Nadeem, R.U. Haq and Z.H. Khan, Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Engineering Journal Volume 53, Issue 1, March 2014, Pages 219-224
- [87] N. Sandeep, A. Malvandi, Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles, Advanced Powder Technology, 27 (2017) 2448–2456.
- [88] S. Mosayebidorcheh, O.D. Makinde, D.D. Ganji, M. A. Chermahini. DTM-FDM hybrid approach to unsteady MHD Couette flow and heat transfer of dusty fluid with variable properties, Thermal Science and Engineering Progress 2 (2017) 57-63.
- [89] M. E. Ali, N. Sandeep, Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study, Results in Physics, 7 (2017) 21-30.
- [90] R.N. Barik, Chemical reaction and radiation effects of MHD free convective flow an impulsively moving vertical plate with ramped wall temperature and concentration, European Journal of Advanced in Engineering and Technology, 1 (2014) 56-68.
- [91] C. Sulochana, M.K. Kishore Kumar and N. Sandeep, Radiation and chemical reaction effects on MHD thermosolutal nanofluid flow over a vertical plate in porous medium, Chemical and Process Eng. Research, 34 (2015) 28-37.
- [92] A. Rao, S. Shivaiah and Sk. Nuslin, Radiation effects on an unsteady MHD free convective flow a vertical porous plate in the presence of soret, Advanced in Applied Science Research, 3 (2012) 1663-1676.
- [93] N. Sandeep, M.Gnaneswar Reddy, Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries, Journal of Molecular Liquids, 225 (2017) 87-94.
- [94] N. Sandeep, Ram Prakash Sharma, M. Ferdows, Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles, Journal of Molecular Liquids 234 (2017) 437–443.
- [95] P. Mohan Krishna, N. Sandeep, Ram Prakash Sharma, Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects, European Physical Journal Plus, 132 (2017) 202.
- [96] A. Ishak, R. Nazar, I. Pop. Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature. Nonlinear Analysis: Real World Applications, 10 (2009) 2909-2913
- [97] N. Sandeep, Effect of Aligned Magnetic field on liquid thin film flow of magnetic-nanofluid embedded with graphene nanoparticles, Advanced Powder Technology, 28 (2017) 865–875.
- [98] M .Jayachandra Babu, N. Sandeep, UCM flow across a melting surface in the presence of double stratification and cross-diffusion effects, Journal of Molecular Liquids, 232 (2017) 27-35.
- [99] G. Kumaran, N. Sandeep, Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion, Journal of Molecular Liquids 233 (2017) 262–269.
- [100] O. D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219 (2016) 624-630.
- [101] W.A. Khan, O.D. Makinde, Z.H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, Int. J. Heat Mass Transfer, 96 (2016) 525-534.
- [102] O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer, Int. J. Heat Mass Transfer, 93 (2016) 595-604.
- [103] O.D. Makinde, I.L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. Journal of Molecular Liquids. 221 (2016) 733-743.
- [104] W. N. Mutuku and O. D. Makinde. Hydromagnetic bioconvection of nanofluid overa permeable vertical plate due to gyrotactic microorganisms. Computers & Fluids, 95 (2014) 88–97.
- [105] O.D. Makinde, I. L. Animasaun: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences, 109 (2016) 159-171.
- [106] W.A. Khan, O.D. Makinde, Z.H. Khan: MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip. International Journal of Heat and Mass Transfer 74 (2014), 285–291.
- [107] W.A. Khan, O.D. Makinde: MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet. International Journal of Thermal Sciences 81 (2014) 118-124.
- [108] S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, On the coupling of polynomials with correction functional. International Journal of Modern Physics B. In press.
- [109] S. T. Mohyud-Din, Solving heat and wave-like equations using He's polynomials. Mathematical Problems in Engineering, vol. 2009, Article ID 427516, 12 pages, 2009.
- [110] M. A. Noor and S. T. Mohyud-Din, Variational iteration method for solving higher-order nonlinear boundary value problems using He's polynomials. International Journal of Nonlinear Sciences and Numerical Simulation, 9(2) (2008) 141–157.
- [111] N. Herisanu and V. Marinca, A modified variational iteration method for strongly nonlinear problems, Nonlinear Science Letters A, 1 (2010) 183–192
- [112] J.-H. He, Variational iteration method—some recent results and new interpretations, Journal of Computational and Applied Mathematics, 207(1) (2007) 3–17.
- [113] J. H. He, Variational iteration method, a kind of non-linear analytical technique, some examples, International Journal of Non-Linear Mechanics, 34(4) (1999) 699–708.
- [114] J.-H. He, Variational iteration method for autonomous ordinary differential systems, Applied Mathematics and Computation, 114(2-3) (2000) 115–123.
- [115] J.-H. He, The variational iteration method for eighth-order initial-boundary value problems, Physica Scripta, 76(6) (2007) 680–682.
- [116] J.-H. He and X.-H. Wu, Variational iteration method: new development and applications, Computers & Mathematics with Applications, 54(7-8) (2007) 881–894.
- [117] J.-H. He and X.-H. Wu, Construction of solitary solution and compaction-like solution by variational iteration method, Chaos, Solitons & Fractals, 29(1) (2006) 108–113.
- [118] J. H. He, An elementary introduction of recently developed asymptotic methods and nanomechanics in textile engineering, International Journal of Modern Physics B, 22(21) (2008), 3487–4578
- [119] J.-H. He, Some asymptotic methods for strongly nonlinear equations, International Journal of Modern Physics B, 20(10) (2006) 1141–1199.
- [120] S. A. Kechil and I. Hashim, Non-perturbative solution of free-convective boundary-layer equation by Adomian decomposition method, Physics Letters A, 363 (2007) 110–114.
- [121] J.-H. He, Recent development of the homotopy perturbation method, Topological Methods in Nonlinear Analysis, 31(2) (2008) 205–209.
- [122] J.-H. He, Comparison of homotopy perturbation method and homotopy analysis method, Applied Mathematics and Computation, 156(2) (2004) 527–539
- [123] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, International Journal of Nonlinear Science and Numerical Simulation, 6(2) (2005), 207–208.
- [124] J.-H. He, The homotopy perturbation method nonlinear oscillators with discontinuities, Applied Mathematics and Computation, 151(1) (2004) 287–292.
- [125] J.-H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-Linear Mechanics, 35(1) (2000) 37–43.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-59e65f29-09c4-44bb-80f4-0f7994b4d58b