PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 78 | 255-266
Article title

Application of the Apriori algorithm in the management of sports training

Content
Title variants
Languages of publication
EN
Abstracts
EN
The objective of the study was to test the Apriori algorithm of classification for obtaining training components that are connected with one another in the strongest way, in athletic training of race walkers. The presented algorithm expansion of the selection process will also generalize and obtain a system for recognizing the effectiveness of athletic training. Furthermore, particular properties of the criteria of component sets will be specified in terms of general selection in order to combine the relative and non-relative criteria.
Keywords
Year
Volume
78
Pages
255-266
Physical description
Contributors
  • The Jerzy Kukuczka Academy of Physical Education in Katowice, 72A Mikolowska Street, 40-065 Katowice, Poland
  • nstitute of Archaeology, Faculty of Humanities, Maria Curie-Sklodowska University in Lublin, 5 Marii Sklodowskiej-Curie Street, 20-001 Lublin, Poland
  • The Jerzy Kukuczka Academy of Physical Education in Katowice, 72A Mikolowska Street, 40-065 Katowice, Poland
  • The Jerzy Kukuczka Academy of Physical Education in Katowice, 72A Mikolowska Street, 40-065 Katowice, Poland
References
  • [1] B. E. Counsilman, J. E. Counsilman, The residual effects of training. Journal of Swimming Research, (1991), 7 (1), 5-12
  • [2] B. Yu, Scientific research on track and field. Journal of Sport and Health Science (2015), 4(4), 307
  • [3] C. C. Aggarwal, C. K. Reddy, Data clustering: Algorithms and applications, Chapman and Hall/CRC data mining and knowledge discovery series. CRC Press: Boca Raton (2013).
  • [4] D. G. Roşca, D. Rădoiu, Step-by-step model for the study of the apriori algorithm for predictive analysis. Scientific Bulletin of the „Petru Maior” University of Tîrgu Mureş 12 (2015), 44-47
  • [5] F. D. Percy, Strategy selection and outcome prediction in sport using dynamic learning for stochastic processes. Journal of the Operational Research Society (2015), 66(11), 1840-1849
  • [6] H. Mannila, Methods and problems in data mining. In: Proceedings of the International Conference on Database Theory, New York 1997, 41-55.
  • [7] H. Sozański (Polish), Theory of sport training. Sports Center: Warsaw, 1999.
  • [8] I. H. Witten, E. Frank, Data Mining, Practical Machine Learning Tools and Techniques. Morgan Kaufman Publishers: San Francisco, 2005.
  • [9] J. M. M. Duarte, A. L. N. Fred, F. Duarte, Constraint acquisition methods for data clustering. Intelligent Data Analysis, 18 (2014) 47-64
  • [10] K. Wiktorowicz, K. Przednowek, L. Lassota, T. Krzeszowski, Predictive Modeling in Race Walking. Computational Intelligence and Neuroscience 15 (2015).
  • [11] M. Fujiwara, Y. Kawasaki, H. Yamada, A Pharmacovigilance Approach for Post Marketing in Japan Using the Japanese Adverse Drug Event Report (JADER) Database and Association Analysis. PLoS One (2016), 11(4), 1-8
  • [12] P. N. Tan, M. Steinbach, V. Kumar, Introduction to data mining. Pearson Addison Wesley: Boston, 2006.
  • [13] P. S. M. Tsai, C. Chen: Mining interesting association rules from customer databases and transaction databases. Information Systems, 29 (2004), 685-696
  • [14] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo, Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, Cambridge MA 1996, 307-328
  • [15] R. Agrawal, R. Srikant, Fast algorithms for mining association rules. In: Proceedings of the 1994 Very Large Data Bases Conference, Morgan–Kaufmann 1994, 487-499.
  • [16] S. Sarawagi, S. Thomas, R. Agrawal: Integrating association rule mining with relational database systems: Alternatives and implications. In: Proceedings of the ACM SIGMOD International Conference of Management of Data, Seattle 1998, 343-354.
  • [17] V. Issurin, Blokowaja periodizacja sportiwnoj trenirowki. Sowietskij Sport, Izdatelstwo: Moscow (2010).
  • [18] V. Lyakh, P. Bujas, L. Gargula, Training effects in the preparation of highly qualified football players: Review. Anthropomotorics (2012), 59, 121-135.
  • [19] W. Nengsih, A comparative study on market basket analysis and apriori association technique. In: Conference proceeding of 3rd International Conference on Information and Communication Technology, Bali 2015, 461-464
  • [20] Z. Niu, Y. Nie, Q. Zhou, L. Z. J. Wei, A brain-region-based meta-analysis method utilizing the Apriori algorithm. BMC Neuroscience (2016), 17-23.
  • [21] Z. T. Popovski, T. Nestorovski, M. Wick, A. Tufekchievski, A. Aceski, S. Gjorgjievski, Molecular-genetic predictions in selection of sport talents and ethical aspect of their application. Research in Physical Education, Sport & Health (2016), 5(1), 57-63.
  • [22] Z. Ważny (Polish), Model performance indicators for the championship. RCMSzKFiS: Warsaw (1989).
  • [23] Z. Zhang, H. Cheng, X. Chu, Aided analysis for quality function deployment with an Apriori-based data mining approach. International Journal of Computer Integrated Manufacturing, 23 (2010) 673-686
  • [24] А. Ю. АЖИППО, Н. А. БАЛОНИН, В. А ДРУЗЬ, В. С. СУЗДАЛЬ, Finite system optimization sports equipment movements. Slobozhanskyi R & Sports Bulletin (2015), 46(2), 1-9
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-57d56ba8-e545-40b4-a591-773c394ed2eb
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.