Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 2 | 3 | 213-222

Article title

20 lat doświadczeń z soczewką AcrySof® – jej wpływ na chirurgię zaćmy

Content

Title variants

EN
Twenty years of experience with AcrySof® – its influence on cataract surgery

Languages of publication

PL

Abstracts

PL
Niestety, nie istnieje naturalna soczewka, którą można wszczepić po zabiegu chirurgicznym zaćmy. Dlatego tak ważne jest, żeby sztuczna soczewka wewnątrzgałkowa działała zgodnie z naturalną fizjologią ludzkiego oka, nie tylko naśladując funkcje biologiczne, ale także zapewniając maksymalizację korzyści dla pacjenta. Zakładając, że soczewka wszczepiana jest dożywotnio, w ramach przygotowania pacjenta do operacji powinniśmy wziąć pod uwagę jej konstrukcję, która zapewni stabilność i przewidywalny efekt refrakcyjny, wysoką biokompatybilność z tkankami oka oraz działanie ochronne dla oka. Przywrócenie widzenia funkcjonalnego, jakości obrazu, jego jak najlepszego kontrastu, redukcja aberracji sferycznych pp. to sukces, jaki można osiągnąćdzięki odpowiednio dobranej soczewce.
EN
Unfortunately, there is no such thing as an organic replacement lens to be implanted after cataract surgery. That is why intraocular lens (IOL) must work with the eye’s natural physiology not only to mimic the biological functions of the crystalline lens, but also to maximize patient outcomes. While preparing a patient for surgery, we should take into account some factors which can determine the outcomes, such as: the IOL design, which will ensure stability and predictable refractive effect, a high biocompatibility with the tissues of the eye, and the protective effect to the eye. Properly selected lens can ensure restoration of functional vision, image quality, the best possible contrast or the reduction of spherical aberration, which all testify to the cataract surgery success.

Discipline

Publisher

Journal

Year

Volume

2

Issue

3

Pages

213-222

Physical description

Contributors

  • Dział Medyczny, Alcon; Oddział Okulistyczny, Szpital Wojewódzki im. Mikołaja Kopernika w Koszalinie

References

  • 1. Davison JA. Capsule contraction syndrome. J Cataract Refract Surg 1993; 19(5): 582-589.
  • 2. Hayashi H, Hayashi K, Nakao F, Hayashi F. Areareduction in the anterior capsule opening in eyes of diabetes mellitus patient. J Cataract Refract Surg 1998; 24(8): 1105-1110.
  • 3. Hayashi K, Hayashi H, Matsuo K, et al. Anterior capsule contraction and intraocular lens dislocation after implant surgery in eyes with retinitis pigmentosa. Ophthalmology 1998; 105(7): 1239-1243.
  • 4. Nagata M, Matsushima H, Mukai K, et al. Comparison of anterior capsule contraction between 5 foldable intraocular lens models. J Cataract Refract Surg 2008; 34(9): 1495-1498.
  • 5. Ursell PG, Spalton DJ, Pande MV, et al. Relationship between intraocular lens biomaterials and posterior capsule opacification. J Cataract Refract Surg 1998; 24(3): 352-360.
  • 6. Vasavada AR, Raj SM, Shah A, et al. Comparison of posterior capsule opacification with hydrophobic acrylic and hydrophilic acrylic intraocular lenses. J Cataract Refract Surg 2011; 37(6): 1050-1059.
  • 7. Schaumberg DA, Dana MR, Christen WG, Glynn RJ. A systematic overview of the incidence of posterior capsule opacification. Ophthalmology 1998; 105(7): 1213-1221.
  • 8. Bender LE, Spalton DJ, Meacock W, et al. Predicting posterior capsule opacification: value of early retroillumination imaging. J Cataract Refract Surg 2003; 29(3): 526-531.
  • 9. Heatley CJ, Spalton DJ, Kumar A, et al. Comparison of posterior capsule opacification rates between hydrophilic and hydrophobic single-piece acrylic intraocular lenses. J Cataract Refract Surg 2005; 31(4): 718-724.
  • 10. Hollick EJ, Spalton DJ, Ursell PG, et al. The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. Ophthalmology 1999; 106(1): 49-54; discussion 54-45.
  • 11. Iwase T, Nishi Y, Oveson BC, Jo YJ. Hydrophobic versus double-square-edged hydrophilic foldable acrylic intraocular lens: effect on posterior capsule opacification. J Cataract Refract Surg 2011; 37(6): 1060-1068.
  • 12. Biber JM, Sandoval HP, Trivedi RH, et al. Comparison of the incidence and visual significance of posterior capsule opacification between multifocal spherical, monofocal spherical, and monofocal aspheric intraocular lenses. J Cataract Refract Surg 2009; 35(7): 1234-1238.
  • 13. Nagata T, Minakata A, Watanabe I. Adhesiveness of AcrySof to a collagen film. J Cataract Refract Surg 1998; 24(3): 367-370.
  • 14. Ong M, Wang L, Karakelle M. Fibronectin Adhesive Properties of Various Intraocular Lens Materials. Invest Ophthalmol Vis Sci. 2013; 54: 819, B0043.
  • 15. Kato K, Nishida M, Yamane H, et al. Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change. J Cataract Refract Surg 2001; 27(9): 1493-1498.
  • 16. Dorey MW, Brownstein S, Hill VE, et al. Proposed pathogenesis for the delayed postoperative opacification of the hydroview hydrogel intraocular lens. Am J Ophthalmol 2003; 135(5): 591-598.
  • 17. Morgan-Warren PJ, Smith JA. Intraocular lens-edge design and material factors contributing to posterior-capsulotomy rates: comparing Hoya FY60aD, PY60aD, and AcrySof SN60WF. Clin Ophthalmol 2013; 7: 1661-1667.
  • 18. Kang S, Choy JA, Joo CK. Comparison of posterior capsular opacification in heparin-surface modified hydrophilic acrylic and hydrophobic acrylic intraocular lenses. Jap J Ophthalmol 2009; 53: 204-208.
  • 19. Cleary G, Spalton DJ, Hancox J, et al. Randomized intraindividual comparison of posterior capsule opacification between a microincision intraocular lens and a conventional intraocular lens. J Cataract Refract Surg 2009; 35(2): 265-272.
  • 20. Dhaliwal DK, Mamalis N, Olson RJ, et al. Visual significance of glistenings seen in the AcrySofintraocular lens. J Cataract Refract Surg 1996; 22(4): 452-457.
  • 21. Waite A, Faulkner N, Olson RJ. Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses. Am J Ophthalmol 2007; 144(1): 143-144.
  • 22. Tognetto D, Toto L, Sanguinetti G, Ravalico G. Glistenings in foldable intraocular lenses. J Cataract Refract Surg. 2002; 28(7): 1211-1216.
  • 23. Wilkins E, Olson RJ. Glistenings with longterm follow-up of the Surgidev B20/20 polymethylmethacrylate intraocular lens. Am J Ophthalmol 2001; 132(5): 783-785.
  • 24. Maki T, Izumi S, Ayaki M, Koide R. Glistenings in PMMA intraocular lenses. Showa Univ J Med Sci 2004; 16: 75-82.
  • 25. Werner L. Glistenings and surface light scatteringin intraocular lenses. J Cataract Refract Surg. 2010; 36(8):1398-1420.
  • 26. Moreno-Montanes J, Alvarez A, Rodriguez-Conde R, Fernandez-Hortelano A. Clinical factors related to the frequency and intensity of glistenings in AcrySof intraocular lenses. J Cataract Refract Surg 2003; 29(10): 1980-1984.
  • 27. Colin J, Orignac I, Touboul D. Glistenings in alarge series of hydrophobic acrylic intraocularlenses. J Cataract Refract Surg 2009; 35(12): 2121-2126.
  • 28. Ayaki M, Nishihara H, Yaguchi S, Koide R. Effect of ophthalmic solution components on acrylic intraocular lenses. J Cataract Refract Surg 2007; 33(1): 122-126.
  • 29. Minami H, Torii K, Hiroi K, Kazama S. Glistening of the acrylic intraocular lenses. Rinsho Ganka 1999; 53: 991-994.
  • 30. Viestenz A, Seitz B, Langenbucher A. Evaluating the eye’s rotational stability during standard photography: effect on determining the axial orientation of toric intraocular lenses. J Cataract Refract Surg 2005; 31(3): 557-561.
  • 31. Weinand F, Jung A, Stein A, et al. Rotational stability of a single-piece hydrophobic acrylic intraocular lens: new method for high-precision rotation control. J Cataract Refract Surg 2007; 33(5): 800-803.
  • 32. Mendicute J, Irigoyen C, Aramberri J, et al. Foldable toric intraocular lens for astigmatism correction in cataract patients. J Cataract Refract Surg 2008; 34(4): 601-607.
  • 33. Ruhswurm I, Scholz U, Zehetmayer M, et al. Astigmatism correction with a foldable toric intraocular lens in cataract patients. J Cataract Refract Surg 2000; 26(7): 1022-1027.
  • 34. Miyake T, Kamiya K, Amano R, et al. Long-term clinical outcomes of toric intraocular lens implantation in cataract cases with preexisting astigmatism. J Cataract Refract Surg 2014; 40(10): 1654-1660.
  • 35. Bauer NJ, de Vries NE, Webers CA, et al. Astigmatism management in cataract surgery with the AcrySof toric intraocular lens. J Cataract Refract Surg 2008; 34(9): 1483-1488.
  • 36. Ferreira TB, Marques EF, Rodrigues A, Montes- Mico R. Visual and optical outcomes of a diffractive multifocal toric intraocular lens. J Cataract Refract Surg 2013; 39(7): 1029-1035.
  • 37. Alfonso JF, Knorz M, Fernandez-Vega L, et al. Clinical outcomes after bilateral implantation of an apodized +3.0D toric diffractive multifocal intraocular lens. J Cataract Refract Surg 2014; 40(1): 51-59.
  • 38. Kim MH, Chung TY, Chung ES. Long-term efficacy and rotational stability of AcrySof toric intraocular lens implantation in cataract surgery. Korean J Ophthalmol 2010; 24(4): 207-212.
  • 39. Cekic O, Batman C. The relationship between capsulorhexis size and anterior chamber depth relation. Ophthalmic Surg Lasers 1999; 30(3): 185-190.
  • 40. Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg 1992; 18(2): 125-129.
  • 41. Stifter E, Menapace R, Luksch A, et al. Anterior chamber depth and change in axial intraocular lens position after cataract surgery with primary posterior capsulorhexis and posterior optic buttonholing. J Cataract Refract Surg 2008; 34(5): 749-754.
  • 42. Ursell PG, Spalton DJ, Pande MV. Anterior capsule stability in eyes with intraocular lenses made of poly(methyl methacrylate), silicone, and AcrySof. J Cataract Refract Surg 1997; 23(10): 1532-1538.
  • 43. Nejima R, Miyai T, Kataoka Y, et al. Prospective intrapatient comparison of 6.0-millimeter optic single-piece and 3-piece hydrophobic acrylic foldable intraocular lenses. Ophthalmology 2006; 113(4): 585-590.
  • 44. Nagamoto T, Eguchi G. Morphologic compatibility or intraocular lens haptics and the lens capsule. J Cataract Refract Surg 1997; 23(8): 1254-1259.
  • 45. Packer M, Fine IH, Hoffman RS, Piers PA. Prospective randomized trial of an anterior surface modified prolate intraocular lens. J Refract Surg 2002; 18(6): 692-696.
  • 46. Artal P, Guirao A, Berrio E, Williams DR. Compensation of corneal aberrations by the internal optics in the human eye. J Vis 2001; 1(1): 1-8.
  • 47. Holladay JT, Piers PA, Koranyi G, et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg 2002; 18(6): 683-691.
  • 48. Madrid-Costa D, Ruiz-Alcocer J, Ferrer-Blasco T, et al. In vitro optical performance of a new aberration-free intraocular lens. Eye (Lond) 2014; 28(5): 614-620.
  • 49. Perez-Vives C, Ferrer-Blasco T, Garcia-Lazaro S, et al. Optical quality comparison between spherical and aspheric toric intraocular lenses. Eur J Ophthalmol. 2014; 24(5): 699-706.
  • 50. Ferreira TB, Almeida A. Alcon Acrysof IQ toric intraocular lenses. J Refract Surg 2012; 28(8): 551-555.
  • 51. Atchison DA. Design of aspheric intraocular lenses. Ophthalmic Physiol Opt 1991; 11(2): 137-146.
  • 52. Carlson AN, Stewart WC, Tso PC. Intraocular lens complications requiring removal or exchange. Surv Ophthalmol 1998; 42(5): 417-440.
  • 53. Gimbel HV, Condon GP, Kohnen T, et al. Late in-the-bag intraocular lens dislocation: incidence, prevention, and management. J Cataract Refract Surg 2005; 31(11): 2193-2204.
  • 54. Dick HB, Krummenauer F, Schwenn O, et al. Objective and subjective evaluation of photic phenomena after monofocal and multifocal intraocular lens implantation. Ophthalmology 1999; 106(10): 1878-1886.
  • 55. Ogura Y, Ong MD, Akinay A, et al. Optical performance of hydrophobic acrylic intraocular lenses with surface light scattering. J Cataract Refract Surg 2014; 40(1): 104-113.
  • 56. Ferrer-Blasco T, Montes-Mico R, Peixoto-de-Matos SC, et al. Prevalence of corneal astigmatism before cataract surgery. J Cataract Refract Surg 2009; 35(1): 70-75.
  • 57. Statham M, Apel A, Stephensen D. Comparison of the AcrySof SA60 spherical intraocular lens and the AcrySof Toric SN60T3 intraocular lens outcomes in patients with low amounts of corneal astigmatism. Clin Experiment Ophthalmol 2009; 37(8): 775-779.
  • 58. Hayashi K, Manabe S, Yoshida M, Hayashi H. Effect of astigmatism on visual acuity in eyes with a diffractive multifocal intraocular lens. J Cataract Refract Surg 2010; 36(8): 1323-1329.
  • 59. Fernandez-Vega L, Alfonso JF, Montes-Mico R, Amhaz H. Visual acuity tolerance to residual refractive errors in patients with an apodized diffractive intraocular lens. J Cataract Refract Surg 2008; 34(2): 199-204.
  • 60. Hoffmann PC, Auel S, Hutz WW. Results of higher power toric intraocular lens implantation. J Cataract Refract Surg 2011; 37(8): 1411-1418.
  • 61. Ouchi M. High-cylinder toric intraocular lens implantation versus combined surgery of low-cylinder intraocular lens implantation and limbal relaxing incision for high-astigmatism eyes. Clin Ophthalmol 2014; 8: 661-667.
  • 62. Packer M, Fine IH, Hoffman RS. Refractive lens exchange with the array multifocal intraocular lens. J Cataract Refract Surg 2002; 28(3): 421-424.
  • 63. Alfonso JF, Fernandez-Vega L, Valcarcel B, et al. Outcomes and patient satisfaction after presbyopic bilateral lens exchange with the ReSTOR IOL in emmetropic patients. J Refract Surg 2010; 26(12): 927-933.
  • 64. Blaylock JF, Si Z, Aitchison S, Prescott C. Visual function and change in quality of life after bilateral refractive lens exchange with the ReSTOR multifocal intraocular lens. J Refract Surg 2008; 24(3): 265-273.
  • 65. Dick HB, Gross S, Tehrani M, et al. Refractive lens exchange with an array multifocal intraocular lens. J Refract Surg 2002; 18(5): 509-518.
  • 66. Fernandez-Vega L, Alfonso JF, Rodriguez PP, Montes-Mico R. Clear lens extraction with multifocal apodized diffractive intraocular lens implantation. Ophthalmology 2007; 114(8): 1491-1498.
  • 67. Ferrer-Blasco T, Garcia-Lazaro S, Albarran-Diego C, et al. Contrast sensitivity after refractive lens exchange with a multifocal diffractive aspheric intraocular lens. Arq Bras Oftalmol 2013; 76(2): 63-68.
  • 68. Ferrer-Blasco T, Montes-Mico R, Cervino A, et al. Contrast sensitivity after refractive lens exchange with diffractive multifocal intraocular lens implantation in hyperopic eyes. J Cataract Refract Surg 2008; 34(12): 2043-2048.
  • 69. Goes FJ. Refractive lens exchange with the diffractive multifocal Tecnis ZM900 intraocular lens. J Refract Surg 2008; 24(3): 243- -250.
  • 70. Leysen I, Bartholomeeusen E, Coeckelbergh T, Tassignon MJ. Surgical outcomes of intraocular lens exchange: five-year study. J Cataract Refract Surg 2009; 35(6): 1013-1018.
  • 71. Alio JL, Grabner G, Plaza-Puche AB, et al. Postoperative bilateral reading performance with 4 intraocular lens models: six -month results. J Cataract Refract Surg 2011; 37(5): 842-852.
  • 72. Alio JL, Plaza-Puche AB, Pinero DP, et al. Optical analysis, reading performance, and quality-of life evaluation after implantation of a diffractive multifocal intraocular lens. J Cataract Refract Surg 2011; 37(1): 27-37.
  • 73. Augustin AJ. The physiology of scotoptic vision, contrast vision, color vision and circadian rhythmicity. Retina 2008; 28(9): 1179-1187.
  • 74. Patel AS, Dacey DM. Relative effectiveness of a blue-light filtering IOL photoentrainment of the circadian rhythm. JCRS 2009; 35(3): 529-539.
  • 75. Hutz WW, Eckhardt HB, Rohrig B, Grolmus R. Reading ability with 3 multifocal intraocular lens models. J Cataract Refract Surg 2006; 32(12): 2015-2021.
  • 76. Cionni RJ, Tsai JH. Color perception with AcrySofnatural and AcrySof single-piece intraocular lenses under photopic and mesopic conditions. J Cataract Refract Surg 2006; 32(2): 236-242.
  • 77. Marshall J, Cionni RJ, Davison J, et al. Clinical results of the blue-light filtering AcrySof Natural foldable acrylic intraocular lens. J Cataract Refract Surg 2005; 31(12): 2319-2323.
  • 78. Rodriguez-Galietero A, Montes-Mico R, Munoz G, Albarran-Diego C. Comparison of contrast sensitivity and color discrimination after clear and yellow intraocular lens implantation. J Cataract Refract Surg 2005; 31(9): 1736-1740.
  • 79. Miyata A. Neutralization method for detecting the incidence of color perception changes after cataract surgery. J Cataract Refract Surg 2015; 41(4): 764-770.
  • 80. Nolan JM, O’Reilly P, Loughman J, et al. Augmentation of macular pigment following implantation of blue light-filtering intraocular lenses at the time of cataract surgery. Invest Ophthalmol Vis Sci 2009; 50(10): 4777-4785.
  • 81. Obana A, Tanito M, Gohto Y, et al. Macular pigment changes in pseudophakic eyes quantified with resonance. Raman spectroscopy. Ophthalmology 2011; 118(9): 1852-1858.
  • 82. Rezai KA, Gasyna E, Seagle BL, et al. AcrySof Natural filter decreases blue light-induced apoptosis in human retinal pigment epithelium. Graefe’s Arch Clin Exp Ophthalmol 2008; 246(5): 671.
  • 83. Gray R, Perkins SA, Suryakumar R, et al. Reduced effect of glare disability on driving performance in patients with blue light– filtering intraocular lenses. J Cataract Refract Surg 2011; 37: 38-44.
  • 84. Sparrow JR, Miller AS, Zhou J. Blue light-absorbing intraocular lens and retinal pigment epithelium protection in vitro. J Cataract Refract Surg 2004; 30(4): 873-878.
  • 85. Marshall JC, Gordon KD, McCauley CS, et al. The effect of blue light exposure and use of intraocular lenses on human uveal melanoma cell lines. Melanoma Research 2006; 16(6): 537-541.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-57a23f16-a42e-4955-882a-9d58e830d1f4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.