Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 16 | 66 | 281–287

Article title

Shear wave elastography with a new reliability indicator

Content

Title variants

PL
Elastografia fali poprzecznej z nowym wskaźnikiem wiarygodności

Languages of publication

EN PL

Abstracts

EN
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
PL
W ostatnich latach pojawiły się nowe nieinwazyjne metody oceny sztywności wątroby. Dwie główne spośród tych metod znalazły zastosowanie w praktyce klinicznej do elastosonograficznej oceny włóknienia wątroby: elastografia fali poprzecznej oraz elastografia quasi-statyczna/ odkształceń względnych. Fale poprzeczne to fale o ruchu prostopadłym (lateralnym) do kierunku siły wzbudzającej. Fale poprzeczne przemieszczają się stosunkowo wolno (od 1 do 10 m/s). Sztywność tkanki wątroby można oceniać na podstawie szybkości fali poprzecznej (sztywność wzrasta proporcjonalnie do szybkości). Europejska Federacja Towarzystw Ultrasonograficznych w Medycynie i Biologii (The European Federation of Societies for Ultrasound in Medicine and Biology) wydała wytyczne zawierające opis tych technologii oraz zalecenia dotyczące ich klinicznego stosowania. Dotychczas większość dostępnych danych uzyskiwano z wykorzystaniem aparatury FibroScan (Echosens, Francja), punktowego pomiaru szybkości fali poprzecznej przy użyciu silnego impulsu akustycznego (Siemens, Niemcy) oraz elastografii fali poprzecznej z zastosowaniem aparatu Aixplorer (SuperSonic Imagine, Francja). W ostatnim czasie również inni producenci wprowadzili na rynek technologię elastografii fali poprzecznej. Porównanie danych uzyskanych z zastosowaniem różnych nietechnik propagacji fali poprzecznej oraz pomiaru jej szybkości ma kluczowe znaczenie dla przyszłych badań, zaleceń oraz wytycznych. W niniejszej pracy przedstawiono niedawno wprowadzoną technologię elastografii fali poprzecznej (Hitachi) oraz omówiono jej powtarzalność i porównywalność względem dotychczas stosowanych technologii.

Discipline

Year

Volume

16

Issue

66

Pages

281–287

Physical description

Contributors

  • Medizinische Klinik 2, Caritas-Krankenhaus Bad Mergentheim, Bad Mergentheim, Germany
author
  • Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China

References

  • 1. Cui XW, Friedrich-Rust M, De Molo C, Ignee A, Schreiber-Dietrich D, Dietrich CF: Liver elastography, comments on EFSUMB elastography guidelines 2013. World J Gastroenterol 2013; 19: 6329–6347.
  • 2. Bamber J, Cosgrove D, Dietrich CF, Fromageau J, Bojunga J, Calliada F et al.: EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med 2013; 34: 169–184.
  • 3. Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH et al.: EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med 2013; 34: 238–253.
  • 4. Castéra L, Vergniol J, Foucher J, Le Bail B, Chanteloup E, Haaser M et al.: Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 2005; 128: 343–350.
  • 5. Durango E, Dietrich C, Seitz HK, Kunz CU, Pomier-Layrargues GT, Duarte-Rojo A et al.: Direct comparison of the FibroScan XL and M probes for assessment of liver fibrosis in obese and nonobese patients. Hepat Med 2013; 5: 43–52.
  • 6. Poynard T, Vergniol J, Ngo Y, Foucher J, Munteanu M, Merrouche W et al.: Staging chronic hepatitis C in seven categories using fibrosis biomarker (FibroTestTM) and transient elastography (FibroScan®). J Hepatol 2014; 60: 706–714.
  • 7. Poynard T, Vergniol J, Ngo Y, Foucher J, Thibault V, Munteanu M, Merrouche W et al.: Staging chronic hepatitis B into seven categories, defining inactive carriers and assessing treatment impact using a fibrosis biomarker (FibroTest®) and elastography (FibroScan®). J Hepatol 2014; 61: 994–1003.
  • 8. Zhang W, Wang L, Wang L, Li G, Huang A, Yin P et al.: Liver stiffness measurement, better than APRI, Fibroindex, Fib-4, and NBI gastroscopy, predicts portal hypertension in patients with cirrhosis. Cell Biochem Biophys 2015; 71: 865–873.
  • 9. Friedrich-Rust M, Wunder K, Kriener S, Sotoudeh F, Richter S, Bojunga J et al.: Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 2009; 252: 595–604.
  • 10. Friedrich-Rust M, Nierhoff J, Lupsor M, Sporea I, Fierbinteanu-Braticevici C, Strobel D et al.: Performance of Acoustic Radiation Force Impulse imaging for the staging of liver fibrosis: a pooled metaanalysis. J Viral Hepat 2012; 19: e212–e219.
  • 11. Friedrich-Rust M, Romen D, Vermehren J, Kriener S, Sadet D, Herrmann E et al.: Acoustic radiation force impulse-imaging and transient elastography for non-invasive assessment of liver fibrosis and steatosis in NAFLD. Eur J Radiol 2012; 81: e325–e331.
  • 12. Franchi-Abella S, Corno L, Gonzales E, Antoni G, Fabre M, Ducot B et al.: Feasibility and diagnostic accuracy of supersonic shear-wave elastography for the assessment of liver stiffness and liver fibrosis in children: a pilot study of 96 patients. Radiology 2016; 278: 554–562.
  • 13. Thiele M, Detlefsen S, Sevelsted Møller L, Madsen BS, Fuglsang Hansen J, Fialla AD et al.: Transient and 2-dimensional shear-wave elastography provide comparable assessment of alcoholic liver fibrosis and cirrhosis. Gastroenterology 2016; 150: 123–133.
  • 14. Piscaglia F, Salvatore V, Mulazzani L, Cantisani V, Schiavone C: Ultrasound shear wave elastography for liver disease. A critical appraisal of the many actors on the stage. Ultraschall Med 2016; 37: 1–5.
  • 15. Sonoyama T, Murayama N, Inoue N: Development of shear wave measurement with a reliability indicator. Medix 2015; 63: 40–44.
  • 16. Yada N, Sakurai T, Minami T, Arizumi T, Takita M, Hagiwara S et al.: A newly developed shear wave elastography modality: with a unique reliability index. Oncology 2015; 89 (suppl. 2): 53–59.
  • 17. Hirche TO, Ignee A, Barreiros AP, Schreiber-Dietrich D, Jungblut S, Ott M et al.: Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. Endoscopy 2008; 40: 910–917.
  • 18. Dietrich CF, Hirche TO, Ott M, Ignee A: Real-time tissue elastography in the diagnosis of autoimmune pancreatitis. Endoscopy 2009; 41: 718–720.
  • 19. Cui XW, Hocke M, Jenssen C, Ignee A, Klein S, Schreiber-Dietrich D et al.: Conventional ultrasound for lymph node evaluation, update 2013. Z Gastroenterol 2014; 52: 212–221.
  • 20. Cui XW, Chang JM, Kan QC, Chiorean L, Ignee A, Dietrich CF: Endoscopic ultrasound elastography: current status and future perspectives. World J Gastroenterol 2015; 21: 13212–13224.
  • 21. Dietrich CF, Jenssen C, Arcidiacono PG, Cui XW, Giovannini M, Hocke M et al.: Endoscopic ultrasound: elastographic lymph node evaluation. Endosc Ultrasound 2015; 4: 176–190.
  • 22. Janssen J, Dietrich CF, Will U, Greiner L: Endosonographic elastography in the diagnosis of mediastinal lymph nodes. Endoscopy 2007; 39: 952–957.
  • 23. Dietrich CF, Ponnudurai R, Bachmann Nielsen M: [Is there a need for new imaging methods for lymph node evaluation?]. Ultraschall Med 2012; 33: 411–414.
  • 24. Cui XW, Jenssen C, Saftoiu A, Ignee A, Dietrich CF: New ultrasound techniques for lymph node evaluation. World J Gastroenterol 2013; 19: 4850–4860.
  • 25. Dietrich CF, Săftoiu A, Jenssen C: Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review. Eur J Radiol 2014; 83: 405–414.
  • 26. Chiorean L, Barr RG, Braden B, Jenssen C, Cui XW, Hocke M et al.: Transcutaneous ultrasound: elastographic lymph node evaluation. Current clinical applications and literature review. Ultrasound Med Biol 2016; 42: 16–30.
  • 27. Dietrich CF, Hocke M, Jenssen C: [Ultrasound for abdominal lymphadenopathy]. Dtsch Med Wochenschr 2013; 138: 1001–1018.
  • 28. Allgayer H, Ignee A, Zipse S, Crispin A, Dietrich CF: Endorectal ultrasound and real-time elastography in patients with fecal incontinence following anorectal surgery: a prospective comparison evaluating short- and long-term outcomes in irradiated and non-irradiated patients. Z Gastroenterol 2012; 50: 1281–1286.
  • 29. Allgayer H, Ignee A, Dietrich CF: Endosonographic elastography of the anal sphincter in patients with fecal incontinence. Scand J Gastroenterol 2010; 45: 30–38.
  • 30. Bojunga J, Dauth N, Berner C, Meyer G, Holzer K, Voelkl L et al.: Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One 2012; 7: e42735.
  • 31. Friedrich-Rust M, Romenski O, Meyer G, Dauth N, Holzer K, Grünwald F et al.: Acoustic radiation force impulse-imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics 2012; 52: 69–74.
  • 32. Friedrich-Rust M, Vorlaender C, Dietrich CF, Kratzer W, Blank W, Schuler A et al.: Evaluation of strain elastography for differentiation of thyroid nodules: results of a prospective DEGUM multicenter study. Ultraschall Med 2016; 37: 262–270.
  • 33. Dietrich CF, Bojunga J: [Ultrasound of the thyroid]. Laryngorhinootologie 2016; 95: 87–104.
  • 34. Dietrich CF, Bojunga J: [Ultrasound of the thyroid]. Z Gastroenterol 2015; 53: 208–225.
  • 35. Ferraioli G, Filice C, Castera L, Choi BI, Sporea I, Wilson SR et al.: WFUMB guidelines and recommendations for clinical use of ultrasound elastography. Part 3: liver. Ultrasound Med Biol 2015; 41: 1161–1179.
  • 36. Cui XW, Pirri C, Ignee A, De Molo C, Hirche TO, Schreiber-Dietrich DG et al.: Measurement of shear wave velocity using acoustic radiation force impulse imaging is not hampered by previous use of ultrasound contrast agents. Z Gastroenterol 2014; 52: 649–653.
  • 37. Barr RG, Nakashima K, Amy D, Cosgrove D, Farrokh A, Schafer F et al.: WFUMB guidelines and recommendations for clinical use of ultrasound elastography. Part 2: breast. Ultrasound Med Biol 2015; 41: 1148–1160.
  • 38. Shiina T, Nightingale KR, Palmeri ML, Hall TJ, Bamber JC, Barr RG et al.: WFUMB guidelines and recommendations for clinical use of ultrasound elastography. Part 1: basic principles and terminology. Ultrasound Med Biol 2015; 41: 1126–1147.

Document Type

review

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-548479b6-7948-4036-b8f5-2b4908fc7c93
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.