PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 86 | 3 | 333-344
Article title

Anisotropic charged stars with quadratic equation state

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we present a new model of static spherically symmetric relativistic compact stellar objects with anisotropic charged matter distribution and quadratic equation of state together with a prescribed form for the gravitational potential Z used by Bhar and Murad (2016). A graphical analysis of the physical properties indicate indicates that the new model well behaved and not admit singularities in the matter and the charge density.
Year
Volume
86
Issue
3
Pages
333-344
Physical description
Contributors
  • Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela
References
  • [1] P. K. Kuhfitting, Some remarks on exact wormhole solutions. Adv. Stud. Theor. Phys. 5, 365- 367, 2011.
  • [2] J. Bicak, Einstein equations: exact solutions. Encyclopedia of Mathematical Physics, 2, 165-173, 2006.
  • [3] M. Malaver. Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin, 2013. ISBN: 978-3-659-34784-9
  • [4] K. Komathiraj, S.D. Maharaj. Classes of exact Einstein-Maxwell solutions. Gen. Rel. Grav. 39, 2079-2093, 2008.
  • [5] R. Sharma, S, Mukherjee, S.D. Maharaj, General solution for a class of static charged stars. Gen. Rel. Grav. 33, 999-110, 2001.
  • [6] R.L. Bowers, E.P.T. Liang, Anisotropic spheres in general relativity. Astrophys. J. 188, 657, 1974.
  • [7] M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Some models of anisotropic spheres in general relativity, J. Math. Phys. 22(1), 118, 1981.
  • [8] M. K. Gokhroo, A. L. Mehra. Anisotropic spheres with variable energy density in general relativity. Gen. Relat. Grav. 26(1), 75-84, 1994.
  • [9] A. I. Sokolov. Phase transitions in a superfluid neutron liquid. Sov. Phys. JETP. 52, 575, 1980.
  • [10] V. V. Usov. Electric fields at the quark surface of strange stars in the color-flavor locked phase. Phys. Rev. D, 70, 067301, 2004.
  • [11] K. Komathiraj, S.D. Maharaj, Analytical models for quark stars. Int. J. Mod. Phys. D16, pp. 1803-1811, 2007.
  • [12] M. Malaver. Models for quark stars with charged anisotropic matter. Research Journal of Modeling and Simulation, 1(4), 65-71, 2014.
  • [13] M. Malaver, Some new models for strange quark stars with isotropic pressure. AASCIT Communications, 1, 48-51, 2014.
  • [14] S. Thirukkanesh, S. D. Maharaj. Charged anisotropic matter with linear equation of state. Class. Quantum Gravity, 25, 235001, 2008.
  • [15] S. D. Maharaj, J. M, Sunzu, and S. Ray. Some simple models for quark stars. Eur. Phys. J. Plus. 129, 3, 2014.
  • [16] S. Thirukkanesh, F.C. Ragel, A class of exact strange quark star model. PRAMANA - Journal of Physics, 81(2), 275-286, 2013.
  • [17] J. M. Sunzu, S. D. Maharaj, S. Ray. Quark star model with charged anisotropic matter, Astrophysics Space Sci. 354, 517- 524, 2014.
  • [18] T. Feroze, A. Siddiqui. Charged anisotropic matter with quadratic equation of state. Gen. Rel. Grav. 43, 1025-1035, 2011, 2011.
  • [19] T. Feroze, and A. Siddiqui. Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state. Journal of the Korean Physical Society, 65(6), 944-947, 2014.
  • [20] M. Malaver. Strange quark star model with quadratic equation of state. Frontiers of Mathematics and Its Applications 1(1), 9-15, 2014. arXiv:1407.0760
  • [21] M. Malaver. Quark star model with charge distributions. Open Science Journal of Modern Physics 1(1), 6-11, 2014.
  • [22] M. Malaver. Relativistic Modeling of Quark Stars with Tolman IV Type Potential. International Journal of Modern Physics and Application 2(1), 1-6, 2015.
  • [23] M. Malaver. Classes of Relativistic Stars with Quadratic Equation of State. World Scientific News 57, 70-80, 2016.
  • [24] P. M. Takisa, S. D. Maharaj. Some charged polytropic models. Gen. Rel. Grav. 45, 1951-1969, 2013.
  • [25] S. Thirukkanesh, F. C. Ragel. Exact anisotropic sphere with polytropic equation of state. PRAMANA - Journal of Physics 78(5), 687-696, 2012.
  • [26] M. Malaver. Analytical model for charged polytropic stars with Van der Waals Modified Equation of State. American Journal of Astronomy and Astrophysics 1(4), 41-46, 2013
  • [27] M. Malaver. Regular model for a quark star with Van der Waals modified equation of state. World Applied Programming 3, 309-313, 2013.
  • [28] S. Thirukkanesh, F.C. Ragel. Strange star model with Tolmann IV type potential. Astrophysics and Space Science 352(2), 743-749, 2014.
  • [29] M. K. Mak, T. Harko. Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D13, 149-156, 2004.
  • [30] P. Bhar, M. H. Murad, N. Pant. Relativistic anisotropic stellar models with Tolman VII spacetime. Astrophysics and Space Science 359, 13, 2015, doi: 10.1007/s10509-015-2462-9
  • [31] P. Bhar, K. N, Singh, N. Pant. Compact star modeling with quadratic equation of state in Tolman VII spacetime. Indian Journal of Physics 91(6), 701-709, 2017. doi:10.1007/s12648-017-0963-9
  • [32] N. Pant, N. Pradhan, M. Malaver. Anisotropic fluid star model in isotropic coordinates. Int. J. Astrophys. Space Sci. 3(1), 1-5, 2015.
  • [33] P. Bhar, M. H. Murad. Relativistic compact anisotropic charged stellar models with Chaplygin equation of state. Astrophysics and Space Science 361:334, 2016. doi:10.1007/s10509-016-2923-9
  • [34] M. C. Durgapal, R. Bannerji. New analytical stellar model in general relativity. Phys. Rev. D 27, 328-331, 1983
  • [35] L. Herrera. Cracking of self-gravitating compact objects. Phys. Lett. A, 165(3), 206-210, 1992.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-51d6c932-ec5b-4597-8152-c62cf9e189bc
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.