Title variants
Languages of publication
Abstracts
In this paper, we present a new model of static spherically symmetric relativistic compact stellar objects with anisotropic charged matter distribution and quadratic equation of state together with a prescribed form for the gravitational potential Z used by Bhar and Murad (2016). A graphical analysis of the physical properties indicate indicates that the new model well behaved and not admit singularities in the matter and the charge density.
Discipline
Publisher
Journal
Year
Volume
Issue
Pages
333-344
Physical description
Contributors
author
- Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela
References
- [1] P. K. Kuhfitting, Some remarks on exact wormhole solutions. Adv. Stud. Theor. Phys. 5, 365- 367, 2011.
- [2] J. Bicak, Einstein equations: exact solutions. Encyclopedia of Mathematical Physics, 2, 165-173, 2006.
- [3] M. Malaver. Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin, 2013. ISBN: 978-3-659-34784-9
- [4] K. Komathiraj, S.D. Maharaj. Classes of exact Einstein-Maxwell solutions. Gen. Rel. Grav. 39, 2079-2093, 2008.
- [5] R. Sharma, S, Mukherjee, S.D. Maharaj, General solution for a class of static charged stars. Gen. Rel. Grav. 33, 999-110, 2001.
- [6] R.L. Bowers, E.P.T. Liang, Anisotropic spheres in general relativity. Astrophys. J. 188, 657, 1974.
- [7] M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Some models of anisotropic spheres in general relativity, J. Math. Phys. 22(1), 118, 1981.
- [8] M. K. Gokhroo, A. L. Mehra. Anisotropic spheres with variable energy density in general relativity. Gen. Relat. Grav. 26(1), 75-84, 1994.
- [9] A. I. Sokolov. Phase transitions in a superfluid neutron liquid. Sov. Phys. JETP. 52, 575, 1980.
- [10] V. V. Usov. Electric fields at the quark surface of strange stars in the color-flavor locked phase. Phys. Rev. D, 70, 067301, 2004.
- [11] K. Komathiraj, S.D. Maharaj, Analytical models for quark stars. Int. J. Mod. Phys. D16, pp. 1803-1811, 2007.
- [12] M. Malaver. Models for quark stars with charged anisotropic matter. Research Journal of Modeling and Simulation, 1(4), 65-71, 2014.
- [13] M. Malaver, Some new models for strange quark stars with isotropic pressure. AASCIT Communications, 1, 48-51, 2014.
- [14] S. Thirukkanesh, S. D. Maharaj. Charged anisotropic matter with linear equation of state. Class. Quantum Gravity, 25, 235001, 2008.
- [15] S. D. Maharaj, J. M, Sunzu, and S. Ray. Some simple models for quark stars. Eur. Phys. J. Plus. 129, 3, 2014.
- [16] S. Thirukkanesh, F.C. Ragel, A class of exact strange quark star model. PRAMANA - Journal of Physics, 81(2), 275-286, 2013.
- [17] J. M. Sunzu, S. D. Maharaj, S. Ray. Quark star model with charged anisotropic matter, Astrophysics Space Sci. 354, 517- 524, 2014.
- [18] T. Feroze, A. Siddiqui. Charged anisotropic matter with quadratic equation of state. Gen. Rel. Grav. 43, 1025-1035, 2011, 2011.
- [19] T. Feroze, and A. Siddiqui. Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state. Journal of the Korean Physical Society, 65(6), 944-947, 2014.
- [20] M. Malaver. Strange quark star model with quadratic equation of state. Frontiers of Mathematics and Its Applications 1(1), 9-15, 2014. arXiv:1407.0760
- [21] M. Malaver. Quark star model with charge distributions. Open Science Journal of Modern Physics 1(1), 6-11, 2014.
- [22] M. Malaver. Relativistic Modeling of Quark Stars with Tolman IV Type Potential. International Journal of Modern Physics and Application 2(1), 1-6, 2015.
- [23] M. Malaver. Classes of Relativistic Stars with Quadratic Equation of State. World Scientific News 57, 70-80, 2016.
- [24] P. M. Takisa, S. D. Maharaj. Some charged polytropic models. Gen. Rel. Grav. 45, 1951-1969, 2013.
- [25] S. Thirukkanesh, F. C. Ragel. Exact anisotropic sphere with polytropic equation of state. PRAMANA - Journal of Physics 78(5), 687-696, 2012.
- [26] M. Malaver. Analytical model for charged polytropic stars with Van der Waals Modified Equation of State. American Journal of Astronomy and Astrophysics 1(4), 41-46, 2013
- [27] M. Malaver. Regular model for a quark star with Van der Waals modified equation of state. World Applied Programming 3, 309-313, 2013.
- [28] S. Thirukkanesh, F.C. Ragel. Strange star model with Tolmann IV type potential. Astrophysics and Space Science 352(2), 743-749, 2014.
- [29] M. K. Mak, T. Harko. Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D13, 149-156, 2004.
- [30] P. Bhar, M. H. Murad, N. Pant. Relativistic anisotropic stellar models with Tolman VII spacetime. Astrophysics and Space Science 359, 13, 2015, doi: 10.1007/s10509-015-2462-9
- [31] P. Bhar, K. N, Singh, N. Pant. Compact star modeling with quadratic equation of state in Tolman VII spacetime. Indian Journal of Physics 91(6), 701-709, 2017. doi:10.1007/s12648-017-0963-9
- [32] N. Pant, N. Pradhan, M. Malaver. Anisotropic fluid star model in isotropic coordinates. Int. J. Astrophys. Space Sci. 3(1), 1-5, 2015.
- [33] P. Bhar, M. H. Murad. Relativistic compact anisotropic charged stellar models with Chaplygin equation of state. Astrophysics and Space Science 361:334, 2016. doi:10.1007/s10509-016-2923-9
- [34] M. C. Durgapal, R. Bannerji. New analytical stellar model in general relativity. Phys. Rev. D 27, 328-331, 1983
- [35] L. Herrera. Cracking of self-gravitating compact objects. Phys. Lett. A, 165(3), 206-210, 1992.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-51d6c932-ec5b-4597-8152-c62cf9e189bc