Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
System messages
  • Session was invalidated!
  • Session was invalidated!
2012 | 12 | 4 | 222–235

Article title

Mechanizmy patogenetyczne stwardnienia bocznego zanikowego

Content

Title variants

EN
Pathogenetic mechanisms of amyotrophic lateral sclerosis

Languages of publication

PL

Abstracts

PL
Stwardnienie boczne zanikowe (SLA) jest chorobą neurozwyrodnieniową, w której dochodzi do uszkodzenia neuronów ruchowych. Patogeneza SLA jest prawdopodobnie wieloczynnikowa, kompleksowa i nie do końca poznana. Mogą w niej uczestniczyć takie mechanizmy, jak: stres oksydacyjny, toksyczność kwasu glutaminowego, dysfunkcja mitochondriów, stres siateczki wewnątrzplazmatycznej, agregacja białek, dysfunkcja cytoszkieletu, zaburzenia transportu aksonalnego, udział komórek glejowych, neurozapalenie, dyskrazja kwasu mlekowego, czynniki genetyczne. Istotną przyczyną stresu oksydacyjnego w SLA są mutacje genu dysmutazy nadtlenkowej 1 (SOD1) prowadzące do zmienionej aktywności enzymu i jego toksyczności. Zmutowany enzym SOD1 bierze udział w reakcjach zapalnych aktywowanych astrocytów i mikrogleju w rdzeniu kręgowym chorych na SLA. Mechanizmy stresu oksydacyjnego i toksyczności glutaminianu są ze sobą sprzężone. Śmierć motoneuronów następuje wskutek aktywacji kaspaz i drogi apoptozy, a uszkodzenie funkcji mitochondriów uczestniczy w tym procesie. Zmiany patomorfologiczne w obrębie siateczki wewnątrzplazmatycznej występują już we wczesnej fazie choroby i wskazują, że stres tej struktury odgrywa istotną rolę w mechanizmie neurodegeneracji w SLA. W chorobie tej występują także nieprawidłowości cytoszkieletu dotyczące neurofilamentów. Zgodnie z hipotezą dyskrazji kwasu mlekowego dysregulacja kanału mięśniowo-neuronalnego kwasu mlekowego prowadzi do stresu komórkowego, toksyczności i postępującego zwyrodnienia. Istotną funkcję w patogenezie SLA mogą także pełnić mutacje genetyczne innych białek niż SOD1.
EN
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, resulting in a damage of motor neurons. Pathogenesis of ALS is most probably multifactorial, complex and not entirely elucidated. It may involve such mechanisms as oxidative stress, toxicity of glutamic acid, dysfunction of the mitochondria, stress of endoplasmic reticulum, aggregation of proteins, dysfunction of the cytoskeleton, disturbed axonal transport, role of glial cells, neuroinflammatory process, lactic acid dyscrasia, and genetic factors. An important cause of oxidative stress in ALS are mutations of superoxide dismutase 1 (SOD1) gene leading to altered activity of the enzyme and its enhanced toxicity. Abnormal SOD1 participates in inflammatory response of activated astrocytes and microglia in the spinal cord of ALS patients. Mechanisms of oxidative stress and glutamate toxicity are coupled together. Death of motor neurons occurs as a result if activation of caspases and apoptosis, while mitochondrial dysfunction merely participates in the process. Pathomorphological alterations within the endoplasmic reticulum are present already at an early phase of the disease and indicate that stress within this structure plays an important role in the ALS-related process of neurodegeneration. Another interesting feature of ALS are alterations of cytoskeleton, concerning mainly neurofilaments. According to the hypothesis of lactic acid dyscrasia, dysregulation of myoneuronal lactic acid channel results in cellular stress, toxicity and progressive degeneration. An important role in the pathogenesis of ALS may be also played by genetic mutations of proteins other than SOD1.

Discipline

Year

Volume

12

Issue

4

Pages

222–235

Physical description

Contributors

  • Samodzielna Pracownia Rehabilitacji Neurologicznej, Uniwersytet Medyczny w Lublinie

References

  • 1. Ince P.G., Clark B., Holton J. i wsp.: Disease of movement and system degeneration. Motor neuron disease (amyotrophic lateral sclerosis). W: Love S., Louis D.N., Ellison D.W. (red.): Greenfield’s Neuropathology. Hodder Arnold, Londyn 2008.
  • 2. Barber S.C., Shaw P.J.: Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med. 2010; 48: 629-641.
  • 3. Ferraiuolo L., Kirby J., Grierson A.J. i wsp.: Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat. Rev. Neurol. 2011; 7: 616-630.
  • 4. Ihara Y., Nobukuni K., Takata H., Hayabara T.: Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol. Res. 2005; 27: 105-108.
  • 5. Smith R.G., Henry Y.K., Mattson M.P., Appel S.H.: Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann. Neurol. 1998; 44: 696-699.
  • 6. Tohgi H., Abe T., Yamazaki K. i wsp.: Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann. Neurol. 1999; 46: 129-131.
  • 7. Fitzmaurice P.S., Shaw I.C., Kleiner H.E. i wsp.: Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 1996; 19: 797-798.
  • 8. Shaw P.J., Ince P.G., Falkous G., Mantle D.: Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann. Neurol. 1995; 38: 691-695.
  • 9. Ferrante R.J., Brown S.E., Shinobu L.A. i wsp.: Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 1997; 69: 2064-2074.
  • 10. Abe K., Pan L.H., Watanabe M. i wsp.: Induction of nitrotyrosine- like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci. Lett. 1995; 199: 152-154.
  • 11. Beal M.F., Ferrante R.J., Browne S.E. i wsp.: Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 1997; 42: 644-654.
  • 12. Shaw P.J., Kuncl R.W.: Current concepts in the pathogenesis of ALS. W: Kuncl R.W. (red.): Motor Neuron Disease. WB Saunders, Londyn 2002.
  • 13. Boillée S., Cleveland D.: Revisiting oxidative damage in ALS: microglia, Nox, and mutant SOD1. J. Clin. Invest. 2008; 118: 474-478.
  • 14. Oliver P.L., Finelli M.J., Edwards B. i wsp.: Oxr1 is essential for protection against oxidative stress-induced neurodegeneration. PLoS Genet. 2011; 7: e1002338.
  • 15. Petri S., Körner S., Kiaei M.: Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol. Res. Int. 2012; 2012: 878030.
  • 16. Jiang H., Tian X., Guo Y. i wsp.: Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity. Biol. Pharm. Bull. 2011; 34: 1194-1197.
  • 17. Johnson J.A., Johnson D.A., Kraft A.D. i wsp.: The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann. N. Y. Acad. Sci. 2008; 1147: 61-69.
  • 18. Heath P.R., Shaw P.J.: Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26: 438-458.
  • 19. Shaw P.J., Forrest V., Ince P.G. i wsp.: CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 1995; 4: 209-216.
  • 20. Bendotti C., Tortarolo M., Suchak S.K. i wsp.: Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J. Neurochem. 2001; 79: 737-746.
  • 21. Tsai G., Stauch-Slusher B., Sim L. i wsp.: Reductions in acidic amino acids and N-acetyl-aspartyl glutamate (NAAG) in amyotrophic lateral sclerosis CNS. Brain Res. 1991; 655: 195-201.
  • 22. Plaitakis A., Constantakakis E., Smith J.: The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann. Neurol. 1988; 24: 446-449.
  • 23. Kwak S., Hideyama T., Yamashita T., Aizawa H.: AMPA receptor-mediated neuronal death in sporadic ALS. Neuropathology 2010; 30: 182-188.
  • 24. Mitchell J., Paul P., Chen H.J. i wsp.: Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc. Natl Acad. Sci. USA 2010; 107: 7556-7561.
  • 25. Di Carlo M., Giacomazza D., Picone P. i wsp.: Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic. Res. 2012; 46: 1327-1338.
  • 26. Eckmann J., Eckert S.H., Leuner K. i wsp.: Mitochondria: mitochondrial membranes in brain ageing and neurodegeneration. Int. J. Biochem. Cell. Biol. 2013; 45: 76-80.
  • 27. Swerdlow R.H., Parks J.K., Cassarino D.S. i wsp.: Mitochondria in sporadic amyotrophic lateral sclerosis. Exp. Neurol. 1998; 153: 135-142.
  • 28. Jung C., Higgins C.M., Xu Z.: Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J. Neurochem. 2002; 83: 535-545.
  • 29. Fukada K., Zhang F., Vien A. i wsp.: Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Moll. Cell. Proteomics 2004; 3: 1211-1223.
  • 30. Fujita K., Yamauchi M., Shibayama K. i wsp.: Decreased cytochrome c oxidase activity but unchanged superoxide dismutase and glutathione peroxidase activities in the spinal cord of patients with amyotrophic lateral sclerosis. J. Neurosci. Res. 1996; 45: 276-281.
  • 31. Ghiasi P., Hosseinkhani S., Noori A. i wsp.: Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurol. Res. 2012; 34: 297-303.
  • 32. Dhaliwal G.K., Grewal R.P.: Mitochondrial DNA deletion mutation levels are elevated in ALS brains. Neuroreport 2000; 11: 2507-2509.
  • 33. Jaarsma D., Rognoni F., van Duijn W. i wsp.: CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol. 2001; 102: 293-305.
  • 34. Magrané J., Sahawneh M.A., Przedborski S. i wsp.: Mitochondrial dynamics and bioenergetic dysfunction is associated with synaptic alterations in mutant SOD1 motor neurons. J. Neurosci. 2012; 32: 229-242.
  • 35. Cassina P., Cassina A., Pehar M. i wsp.: Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J. Neurosci. 2008; 28: 4115-4122.
  • 36. Miquel E., Cassina A., Martínez-Palma L. i wsp.: Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS One 2012; 7: e34776.
  • 37. Rodríguez G.E., González D.M., Monachelli G.M. i wsp.: Morphological abnormalities in mitochondria of the skin of patients with sporadic amyotrophic lateral sclerosis. Arq. Neuropsiquiatr. 2012; 70: 40-44.
  • 38. Gonzalez de Aguilar J.L., Dupuis L., Oudart H., Loeffler J.P.: The metabolic hypothesis in amyotrophic lateral sclerosis: insight from mutant Cu/Zn-superoxide dismutase mice. Biomed. Pharmacother. 2005; 59: 190-196.
  • 39. Sathasivam S., Gierson A.J., Shaw P.J.: Characterization of the caspase cascade in a cell culture model of SOD-1 related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol. Appl. Neurobiol. 2005; 31: 467-485.
  • 40. Schroder M.: Endoplasmic reticulum stress responses. Cell. Mol. Life Sci. 2008; 65: 862-894.
  • 41. Lindholm D., Wootz H., Korhonen L.: ER stress and neurodegenerative diseases. Cell. Death Differ. 2006; 13: 385-392.
  • 42. Sasaki S.: Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 2010; 69: 346-355.
  • 43. Saxena S., Cabuy E., Caroni P.: A role for motoneuron subtype- selective ER stress in disease manifestations of FALS mice. Nat. Neurosci. 2009; 12: 627-636.
  • 44. Atkin J.D., Farq M.A., Turner B.J. i wsp.: Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein disulfide isomerase with superoxide dismutase 1. J. Biol. Chem. 2006; 281: 30152-30165.
  • 45. Atkin J.D., Farg M.A., Walker A.K.: Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis. Neurobiol. Dis. 2008; 30: 400-407.
  • 46. Kikuchi H., Almer G., Yamashita S.: Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc. Natl Acad. Sci. USA 2006; 103: 6025-6030.
  • 47. Nishitoh H., Kadowaki H., Nagai A. i wsp.: ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 2008; 22: 1451-1464.
  • 48. Vijayalakshmi K., Alladi P.A., Ghosh S. i wsp.: Evidence of endoplasmic reticular stress in the spinal motor neurons exposed to CSF from sporadic amyotrophic lateral sclerosis patients. Neurobiol. Dis. 2011; 41: 695-705.
  • 49. Chen H.J., Anagnostou G., Chai A. i wsp.: Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. J. Biol. Chem. 2010; 285: 40266-40281.
  • 50. Lautenschlaeger J., Prell T., Grosskreutz J.: Endoplasmic reticulum stress and the ER mitochondrial calcium cycle in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2012; 13: 166-177.
  • 51. Ito Y., Yamada M., Tanaka H.: Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol. Dis. 2009; 36: 470-476.
  • 52. Nagata T., Ilieva H., Murakami T. i wsp.: Increased ER stress during motor neuron degeneration in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol. Res. 2007; 29: 767-771.
  • 53. Bernard-Marissal N., Moumen A., Sunyach C. i wsp.: Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J. Neurosci. 2012; 32: 4901-4912.
  • 54. Bendotti C., Marino M., Cheroni C. i wsp.: Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Prog. Neurobiol. 2012; 97: 101-126.
  • 55. Watanabe M., Dykes-Hoberg M., Culotta V.C. i wsp.: Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol. Dis. 2001; 8: 933-941.
  • 56. Valentine J.S., Hart P.J.: Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 2003; 100: 3617-3622.
  • 57. Rodriguez J.A., Valentine J.S., Eggers D.K. i wsp.: Familial amyotrophic lateral sclerosis-associated mutations decrease the thermal stability of distinctly metallated species of human copper/zinc superoxide dismutase. J. Biol. Chem. 2002; 277: 15932-15937.
  • 58. Botelho H.M., Leal S.S., Cardoso I. i wsp.: S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J. Biol. Chem. 2012; 287: 42233-42242.
  • 59. Brotherton T.E., Li Y., Cooper D. i wsp.: Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc. Natl Acad. Sci. USA 2012; 109: 5505-5510.
  • 60. Dewey C.M., Cenik B., Sephton C.F. i wsp.: TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 2012; 1462: 16-25.
  • 61. Sumi H., Kato S., Mochimaru Y. i wsp.: Nuclear TAR DNA binding protein 43 expression in spinal cord neurons correlates with the clinical course in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 2009; 68: 37-47.
  • 62. Wils H., Kleinberger G., Janssens J. i wsp.: TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 2010; 107: 3858-3863.
  • 63. Zhou H., Huang C., Chen H.: Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PloS Genet. 2010; 6: e1000887.
  • 64. Tudor E.L., Galtrey C.M., Perkinton M.S. i wsp.: Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TARDNA- binding protein-43 pathology. Neuroscience 2010; 167: 774-785.
  • 65. Xu Y.F., Zhang Y.J., Lin W.L. i wsp.: Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice. Mol. Neurodegener. 2011; 6: 73.
  • 66. Che M.X., Jiang Y.J., Xie Y.Y. i wsp.: Aggregation of the 35-kDa fragment of TDP-43 causes formation of cytoplasmic inclusions and alteration of RNA processing. FASEB J. 2011; 25: 2344-2353.
  • 67. Fallini C., Bassell G.J., Rossoll W.: The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum. Mol. Genet. 2012; 21: 3703-3718.
  • 68. Nonaka T., Hasegawa M.: Intracellular seeded aggregation of TDP-43. Rinsho Shinkeigaku 2012; 52: 1056-1058.
  • 69. Aulas A., Stabile S., Velde C.: Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol. Neurodegener. 2012; 7: 54.
  • 70. Keller B.A., Volkening K., Droppelmann C.A. i wsp.: Coaggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol. 2012; 124: 733-747.
  • 71. Ayala V., Granado-Serrano A.B., Cacabelos D. i wsp.: Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS. Acta Neuropathol. 2011; 122: 259-270.
  • 72. Kryndushkin D., Wickner R.B., Shewmaker F.: FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein Cell. 2011; 2: 223-236.
  • 73. Fushimi K., Long C., Jayaram N. i wsp.: Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy. Protein Cell. 2011; 2: 141-149.
  • 74. Julien J.P., Beaulieu J.M.: Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects? J. Neurol. Sci. 2000; 180: 7-14.
  • 75. Liu Q., Xie F., Alvarado-Diaz A. i wsp.: Neurofilamentopathy in neurodegenerative diseases. Open Neurol. J. 2011; 5: 58-62.
  • 76. Hirano A., Nakano I., Kurland L.T. i wsp.: Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 1984; 43: 471-480.
  • 77. Menzies F.M., Grierson A.J., Cookson M.R. i wsp.: Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J. Neurochem. 2002; 82: 1118-1128.
  • 78. Beck R., Deek J., Safinya C.R.: Structures and interactions in “bottlebrush” neurofilaments: the role of charged disordered proteins in forming hydrogel networks. Biochem. Soc. Trans. 2012; 40: 1027-1031.
  • 79. Bergeron C., Beric-Maskarel K., Muntasser S. i wsp.: Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J. Neuropathol. Exp. Neurol. 1994; 53: 221-230.
  • 80. Boylan K.B., Glass J.D., Crook J.E. i wsp.: Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2012 [Epub ahead of print].
  • 81. Brettschneider J., Petzold A., Sussmuth S.D. i wsp.: Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 2006; 66: 852-856.
  • 82. Tortelli R., Ruggieri M., Cortese R. i wsp.: Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur. J. Neurol. 2012; 19: 1561-1567.
  • 83. Fialová L., Svarcová J., Bartos A. i wsp.: Cerebrospinal fluid and serum antibodies against neurofilaments in patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 2010; 17: 562-566.
  • 84. Lu C.H., Petzold A., Kalmar B. i wsp.: Plasma neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1G93A mice that model ALS. PLoS One 2012; 7: e40998.
  • 85. Millecamps S., Robertson J., Lariviere R. i wsp.: Defective axonal transport of neurofilament proteins in neurons overexpressing peripherin. J. Neurochem. 2006; 98: 926-938.
  • 86. Lüdemann N., Clement A., Hans V.H. i wsp.: O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J. Biol. Chem. 2005; 280: 31648-31658.
  • 87. Crow J.P., Ye Y.Z., Strong M. i wsp.: Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem. 1997; 69: 1945-1953.
  • 88. King A.E., Blizzard C.A., Southam K.A. i wsp.: Degeneration of axons in spinal white matter in G93A mSOD1 mouse characterized by NFL and alpha-internexin immunoreactivity. Brain Res. 2012; 1465: 90-100.
  • 89. Williamson T.L., Bruijn L.I., Zhu Q. i wsp.: Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc. Natl Acad. Sci. USA 1998; 95: 9631-9636.
  • 90. Kesavapany S., Patel V., Zheng Y.L. i wsp.: Inhibition of Pin1 reduces glutamate-induced perikaryal accumulation of phosphorylated neurofilament-H in neurons. Mol. Biol. Cell. 2007; 18: 3645-3655.
  • 91. Liem R.K., Messing A.: Dysfunctions of neuronal and glial intermediate filaments in disease. J. Clin. Invest. 2009; 119: 1814-1824.
  • 92. Xiao S., Tjostheim S., Sanelli T. i wsp.: An aggregate-inducing peripherin isoform generated through intron retention is upregulated in amyotrophic lateral sclerosis and associated with disease pathology. J. Neurosci. 2008; 28: 1833-1840.
  • 93. Adalbert R., Coleman M.P.: Axon pathology in age-related neurodegenerative disorders. Neuropathol. Appl. Neurobiol. 2012 Oct 10 [Epub ahead of print].
  • 94. Fischer L.R., Culver D.G., Tennant P. i wsp.: Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 2004; 185: 232-240.
  • 95. Cheah B.C., Lin C.S., Park S.B. i wsp.: Progressive axonal dysfunction and clinical impairment in amyotrophic lateral sclerosis. Clin. Neurophysiol. 2012; 123: 2460-2467.
  • 96. Bilsland L.G., Sahai E., Kelly G. i wsp.: Deficits in axonal transport precede ALS symptoms in vivo. Proc. Natl Acad. Sci. USA 2010; 107: 20523-20528.
  • 97. Zhao C., Takita J., Tanaka Y. i wsp.: Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 2001; 105: 587-597.
  • 98. Kuźma-Kozakiewicz M., Chudy A., Gajewska B. i wsp.: Kinesin expression in the central nervous system of humans and transgenic hSOD1G93A mice with amyotrophic lateral sclerosis. Neurodegener. Dis. 2012 [Epub ahead of print].
  • 99. Landers J.E., Melki J., Meininger V. i wsp.: Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 2009; 106: 9004-9009.
  • 100. Tateno M., Kato S., Sakurai T. i wsp.:. Mutant SOD1 impairs axonal transport of choline acetyltransferase and acetylcholine release by sequestering KAP3. Hum. Mol. Genet. 2009; 18: 942-955.
  • 101. Zhang F., Ström A.L., Fukada K. i wsp.: Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex. J. Biol. Chem. 2007; 282: 16691-16699.
  • 102. Fanara P., Banerjee J., Hueck R.V. i wsp.: Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis. J. Biol. Chem. 2007; 282: 23465- 23472.
  • 103. Ravikumar B., Acevedo-Arozena A., Imarisio S. i wsp.: Dynein mutations impair autophagic clearance of aggregateprone proteins. Nat. Genet. 2005; 37: 771-776.
  • 104. Puls I., Jonnakuty C., LaMonte B.H. i wsp.: Mutant dynactin in motor neuron disease. Nat. Genet. 2003; 33: 455-456.
  • 105. Laird F.M., Farah M.H., Ackerley S. i wsp.: Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J. Neurosci. 2008; 28: 1997-2005.
  • 106. Miller K.E., Sheetz M.P.: Axonal mitochondrial transport and potential are correlated. J. Cell. Sci. 2004; 117: 2791-2804.
  • 107. De Vos K., Severin F., van Herreweghe F. i wsp.: Tumor necrosis factor induces hyperphosphorylation of kinesin light chain and inhibits kinesin-mediated transport of mitochondria. J. Cell Biol. 2000; 149: 1207-1214.
  • 108. Brownlees J., Yates A., Bajaj N.P. i wsp.: Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J. Cell Sci. 2000; 113: 401-407.
  • 109. Van Den Bosch L., Robberecht W.: Crosstalk between astrocytes and motor neurons: what is the message? Exp. Neurol. 2008; 211: 1-6.
  • 110. Ekestern E.: Neurotrophic factors and amyotrophic lateral sclerosis. Neurodegener. Dis. 2004; 1: 88-100.
  • 111. Pehar M., Cassina P., Vargas M.R. i wsp.: Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J. Neurochem. 2004; 89: 464-473.
  • 112. Rothstein J.D., Martin L.J., Kuncl R.W.: Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 1992; 326: 1464-1468.
  • 113. Rothstein J.D., Van Kammen M., Levey A.I. i wsp.: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 1995; 38: 73-84.
  • 114. Nagai M., Re D.B., Nagata T. i wsp.: Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 2007; 10: 615-622.
  • 115. Clement A.M., Nguyen M.D., Roberts E.A. i wsp.: Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 2003; 302: 113-117.
  • 116. Ferraiuolo L., Higginbottom A., Heath P.R. i wsp.: Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 2011; 134: 2627-2641.
  • 117. Van Damme P., Bogaert E., Dewil M. i wsp.: Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc. Natl Acad. Sci. USA 2007; 104: 14825-14830.
  • 118. Kriz J., Nguyen M.D., Julien J.P.: Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 2002; 10: 268-278.
  • 119. Brettschneider J., Toledo J.B., van Deerlin V.M. i wsp.: Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 2012; 7: e39216.
  • 120. Yamanaka K.: Glial pathology in amyotrophic lateral sclerosis. Rinsho Shinkeigaku 2011; 51: 1192-1194.
  • 121. Sica R.E.: Is amyotrophic lateral sclerosis a primary astrocytic disease? Med. Hypotheses 2012; 79: 819-822.
  • 122. Song F., Chiang P., Wang J. i wsp.: Aberrant neuregulin 1 signaling in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 2012; 71: 104-115.
  • 123. Rao C.V., Weiss J.H.: Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci. 2004; 27: 17-23.
  • 124. Giulian D.: Reactive glia as rivals in regulating neuronal survival. Glia 1993; 7: 102-110.
  • 125. Yamanaka K., Boillee S., Roberts E.A. i wsp.: Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl Acad. Sci. USA 2008; 105: 7594-7599.
  • 126. Liu G., Fiala M., Mizwicki M.T. i wsp.: Neuronal phagocytosis by inflammatory macrophages in ALS spinal cord: inhibition of inflammation by resolvin D1. Am. J. Neurodegener. Dis. 2012; 1: 60-74.
  • 127. Vargas M.R., Pehar M., Diaz-Amarilla P.J. i wsp.: Transcriptional profile of primary astrocytes expressing ALS-linked mutant SOD1. J. Neurosci. Res. 2008; 86: 3515-3525.
  • 128. McGeer P.L., McGeer E.G.: Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26: 459-470.
  • 129. Philips T., Robberecht W.: Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011; 10: 253-263.
  • 130. Von Bernhardi R., Eugenin J.: Microglial reactivity to β-amyloid is modulated by astrocytes and proinflammatory factors. Brain Res. 2004; 1035: 186-193.
  • 131. Gowing G., Philips T., Van Wijmeersch B. i wsp.: Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase. J. Neurosci. 2008; 28: 10234-10244.
  • 132. Papadimitriou D., Le Verche V., Jacquier A. i wsp.: Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol. Dis. 2010; 37: 493-502.
  • 133. Fujita K., Izumi Y., Kaji R.: Inflammatory mechanisms in amyotrophic lateral sclerosis. Brain Nerve 2012; 64: 273-278.
  • 134. Mantovani S., Garbelli S., Pasini A. i wsp.: Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J. Neuroimmunol. 2009; 210: 73-79.
  • 135. Kipnis J., Avidan H., Caspi R.R., Schwartz M.: Dual effect of CD4+CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc. Natl Acad. Sci. USA 2004; 101 (supl. 2): 14663-14669.
  • 136. Miyagishi H., Kosuge Y., Ishige K., Ito Y.: Expression of microsomal prostaglandin E synthase-1 in the spinal cord in a transgenic mouse model of amyotrophic lateral sclerosis. J. Pharmacol. Sci. 2012; 118: 225-236.
  • 137. Aebischer J., Moumen A., Sazdovitch V. i wsp.: Elevated levels of IFNγ and LIGHT in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. Eur. J. Neurol. 2012; 19: 752-759.
  • 138. Liu Y., Hao W., Dawson A. i wsp.: Expression of amyotrophic lateral sclerosis – linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. J. Biol. Chem. 2009; 284: 3691-3699.
  • 139. Urushitani M., Sik A., Sakurai T. i wsp.: Chromograninmediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat. Neurosci. 2006; 9: 108-118.
  • 140. Fiala M., Chattopadhay M., La Cava A. i wsp.: IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J. Neuroinflammation 2010; 7: 76.
  • 141. Kuhle J., Lindberg R.L., Regeniter A. i wsp.: Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur. J. Neurol. 2009; 16: 771-774.
  • 142. Rentzos M., Nikolaou C., Rombos A. i wsp.: RANTES levels are elevated in serum and cerebrospinal fluid in patients with amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler. 2007; 8: 283-287.
  • 143. Babu G.N., Kumar A., Chandra R. i wsp.: Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem. Res. 2008; 33: 1145-1149.
  • 144. Wilms H., Sievers J., Dengler R. i wsp.: Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J. Neuroimmunol. 2003; 144: 139-142.
  • 145. Zhang R., Miller R.G., Gascon R. i wsp.: Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J. Neuroimmunol. 2009; 206: 121-124.
  • 146. Vadakkadath Meethal S.V., Atwood C.S.: Lactate dyscrasia: a novel explanation for amyotrophic lateral sclerosis. Neurobiol. Aging 2012; 33: 569-581.
  • 147. Rosen D.R., Siddique T., Patterson D. i wsp.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59-62.
  • 148. Eymard-Pierre E., Lesca G., Dollet S. i wsp.: Infantileonset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am. J. Hum. Genet. 2002; 71: 518-527.
  • 149. Nishimura A.L., Mitne-Neto M., Silva H.C. i wsp.: A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 2004; 75: 822-831.
  • 150. Chem Y.Z., Bennett C.L., Huynh H.M. i wsp.: DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 2004; 74: 1128-1135.
  • 151. Greenway M.J., Andersen P.M., Russ C. i wsp.: ANG mutations segregate with familial and “sporadic” amyotrophic lateral sclerosis. Nat. Genet. 2006; 38: 411-413.
  • 152. Skorupa A., King M.A., Aparicio I.M. i wsp.: Motoneurons secrete angiogenin to induce RNA cleavage in astroglia. J. Neurosci. 2012; 32: 5024-5038.
  • 153. Corrado L., Ratti A., Gellera C. i wsp.: High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum. Mutat. 2009; 30: 688-694.
  • 154. Lagier-Tourenne C., Cleveland D.W.: Rethinking ALS: the FUS about TDP-43. Cell 2009; 136: 1001-1004.
  • 155. Brown J.A., Min J., Staropoli J.F. i wsp.: SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience. Amyotroph. Lateral Scler. 2012; 13: 217-222.
  • 156. Lattante S., Conte A., Zollino M. i wsp.: Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 2012; 79: 66-72.
  • 157. Nagayama S., Minato-Hashiba N., Nakata M. i wsp.: Novel FUS mutation in patients with sporadic amyotrophic lateral sclerosis and corticobasal degeneration. J. Clin. Neurosci. 2012; 19: 1738-1739.
  • 158. Chang Y., Kong Q., Shan X. i wsp.: Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PloS One 2008; 3: e2849.
  • 159. Verstraete E., Kuiperij H.B., van Blitterswijk M.M. i wsp.: TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2012; 13: 446-451.
  • 160. Maruyama H.: Identification of a new causative gene of amyotrophic lateral sclerosis: optineurin. Rinsho Shinkeigaku 2012; 52: 1-5.
  • 161. Ying H., Yue B.Y.: Cellular and molecular biology of optineurin. Int. Rev. Cell. Mol. Biol. 2012; 294: 223-258.
  • 162. Kryndushkin D., Ihrke G., Piermartiri T.C., Shewmaker F.: A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol. Microbiol. 2012; 86: 1531-1547.
  • 163. Moumen A., Virard I., Raoul C.: Accumulation of wildtype and ALS-linked mutated VAPB impairs activity of the proteasome. PLoS One 2011; 6: e26066
  • 164. Daoud H., Dobrzeniecka S., Camu W. i wsp.: Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol. Aging 2013; 34: e1-e2.
  • 165. Wu C.H., Fallini C., Ticozzi N. i wsp.: Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 2012; 488: 499-503.
  • 166. Fecto F., Yan J., Vemula S.P. i wsp.: SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 2011; 68: 1440-1446.
  • 167. Rubino E., Rainero I., Chiò A. i wsp.: SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 2012; 79: 1556-1562.
  • 168. Al-Saif A., Al-Mohanna F., Bohlega S.: A mutation in sigma- 1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol. 2011; 70: 913-919.
  • 169. Mancuso R., Oliván S., Rando A. i wsp.: Sigma-1R agonist improves motor function and motoneuron survival in ALS mice. Neurotherapeutics 2012; 9: 814-826.
  • 170. Renton A.E., Majounie E., Waite A. i wsp.: A hexanucleotide repeat expansion in C9ORF72 in the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 245-268.
  • 171. De Jesus-Hernandez M., MacKenzie I.R., Boeve B.F. i wsp.: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72: 245-256.
  • 172. Pratt A.J., Getzoff E.D., Perry J.P.: Amyotrophic lateral sclerosis: update and new developments. Degener. Neurol. Neuromuscul. Dis. 2012; 2012: 1-14.
  • 173. Abramzon Y., Johnson J.O., Scholz S.W. i wsp.: Valosincontaining protein (VCP) mutations in sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 2012; 33: 2231.
  • 174. Couthouis J., Hart M.P., Shorter J. i wsp.: A yeast functional screen predicts new candidate ALS disease genes. Proc. Natl Acad. Sci. USA 2011; 108: 20881-20890.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-510a147e-a356-4321-86d7-47759506e803
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.