PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 5 | 4 | 244-254
Article title

Wtrętowe zapalenie mięśni: objawy kliniczne, diagnostyczne parametry biopsji mięśniowej i rozważania patogenetyczne

Content
Title variants
EN
Inclusion-body myositis: clinical symptoms, diagnostic criteria of muscle biopsy and pathogenetic considerations
Languages of publication
EN PL
Abstracts
EN
Sporadic inclusion-body myositis (s-IBM), the most common muscle disease of older persons, is of unknown cause, and there is no successful treatment. Interest in sporadic inclusion-body myositis has been enhanced by the recent identification within the s-IBM muscle fibers of several abnormally accumulated proteins, which provides novel and important clues to the pathogenesis of this disorder. Here we summarize the clinical presentation, molecular phenotype, diagnostic criteria, and the newest advances related to seeking the pathogenic mechanism(s) of s-IBM. On the basis of our research, several processes seem to be important in relation to the still speculative pathogenesis: 1) increased transcription and accumulation of amyloid-β precursor protein (AβPP), and accumulation of its proteolytic fragment Aβ; 2) abnormal accumulation of cholesterol and its related protein; 3) oxidative stress; 4) accumulations of intramuscle fiber multiprotein aggregates; 5) increased accumulation of myostatin within the muscle fiber and 6) evidence that unfolded/misfolded proteins participate in s-IBM pathogenesis. Our basic hypothesis is that overexpression of AβPP within the aging muscle fibers is an early upstream event causing a subsequent pathogenic cascade.
PL
Wtrętowe zapalenie mięśni (s-IBM) jest najczęstszą chorobą mięśni szkieletowych występującą u starszych osób. Przyczyna tej choroby pozostaje nieznana i jak dotąd brak jest skutecznego leczenia. Na wzrost zainteresowania s-IBM wpłynęło przede wszystkim odkrycie wewnątrz włókien mięśniowych wielu nadmiernie/nieprawidłowo gromadzonych białek, co pozwoliło na wyciągnięcie nowych wniosków dotyczących patogenezy tej choroby. W poniższej pracy podsumowujemy obraz kliniczny, charakterystyczne zmiany patologiczne oraz kryteria diagnostyczne. Na bazie naszych doświadczeń wskazujemy również na kilka zjawisk, które wydają się szczególnie istotne w patogenezie s-IBM. Zaliczyć do nich należy: 1) zwiększoną transkrypcję i nadmierne gromadzenie białka prekursorowego β-amyloidu (AβPP) oraz gromadzenie jego fragmentu β-amyloidu; 2) nieprawidłowe gromadzenie cholesterolu i związanych z nim białek; 3) stres oksydacyjny; 4) gromadzenie wewnątrz włókien mięśniowych wielobiałkowych agregatów; 5) nadmierne gromadzenie miostatyny wewnątrz włókien mięśniowych oraz 6) dowody na to, że białka, które nie posiadają prawidłowej, natywnej konformacji, odgrywają rolę w patogenezie s-IBM. Zgodnie z naszą główną hipotezą nadmierna ekspresja AβPP wewnątrz starzejących się włókien mięśniowych zapoczątkowuje patogenetyczną kaskadę s-IBM.
Discipline
Publisher

Year
Volume
5
Issue
4
Pages
244-254
Physical description
Contributors
  • USC Neuromuscular Center, Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, California, askanas@usc.edu
author
  • USC Neuromuscular Center, Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, California
  • Zakład Anatomii i Neurobiologii Akademii Medycznej w Gdańsku; autor przebywa w USC Neuromuscular Center na urlopie naukowo-szkoleniowym
References
  • 1. Mendell J.R., Sahenk Z., Gales T., Paul L.: Amyloid filaments in inclusion body myositis. Novel findings provide insight into nature of filaments. Arch. Neurol. 1991; 48: 1229-1234.
  • 2. Askanas V, Engel W.K., Alvarez R.B.: Light and electron microscopic localization of β-amyloid protein in muscle biopsies of patients with inclusion-body myositis. Am. J. Pathol. 1992; 141: 31-36.
  • 3. Askanas V, Engel W.K.: Inclusion-body myositis: newest concepts of pathogenesis and relation to aging and Alzheimer disease. J. Neuropathol. Exp. Neurol. 2001; 60: 1-14.
  • 4. Askanas V, Engel WK.: Inclusion-body myositis and myopathies: different etiologies, possibly similar pathogenic mechanisms. Curr. Opin. Neurol. 2002; 15: 525-531.
  • 5. Askanas V, Engel W.K.: Proposed pathogenetic cascade of inclusion-body myositis: importance of amyloid-β, misfolded proteins, predisposing genes, and aging. Curr. Opin. Rheumatol. 2003; 15: 737-744.
  • 6. Jaworska-Wilczynska M., Wilczynski G.M., Engel W.K. i wsp.: Three lipoprotein receptors and cholesterol in inclusion-body myositis muscle. Neurology 2002; 58: 438-445.
  • 7. Yang C.C., Alvarez R.B., Engel WK., Askanas V: Increase of nitric oxide synthases and nitrotyrosine in inclusion-body myositis. Neuroreport 1996; 8: 153-158.
  • 8. Askanas V, Alvarez R.B., Engel W.K.: Beta-amyloid precursor epitopes in muscle fibers of inclusion body myositis. Ann. Neurol. 1993; 34: 551-560.
  • 9. Askanas V, Engel W.K.: Newest approaches to diagnosis and pathogenesis of sporadic inclusion-body myositis and hereditary inclusion-body myopathies, including molecular-pathologic similarities to Alzheimer disease. W: Askanas V, Serratrice G., Engel W.K. (red.): Inclusion-Body Myositis and Myopathies. Cambridge University Press, 1998: 3-78.
  • 10. Mastaglia F.L., Garlepp M.J., Phillips B.A., Zilko P.J.: Inflammatory myopathies: clinical, diagnostic and therapeutic aspects. Muscle Nerve 2003; 27: 407-425.
  • 11. Mikol J., Engel A.G.: Inclusion-body myositis. W: Engel A.G., Franzini-Armstrong C. (red.): Myology Basic and Clinical. Wyd. 3, McGraw-Hill Medical Publishing Division, 2004; 2: 1367-1388.
  • 12. Engel WK., Askanas V: Inclusion-body myositis: clinical, diagnostic, and pathologic aspects. Neurology w druku 2006.
  • 13. Askanas V, Engel W.K.: Late-juvenile sporadic inclusion body myositis: a newly recognized syndrome. Ann. Neurol. 2000; 48: 439-440.
  • 14. Askanas V., Engel WK., Alvarez R.B. i wsp.: Inclusion body myositis, muscle blood vessel and cardiac amyloidosis, and transthyretin Vall22Ile allele. Ann. Neurol. 2000; 47: 544-549.
  • 15. Kula R.W, Engel W.K., Line B.R.: Scanning for soft-tissue amyloid. Lancet 1977; 1: 92-93.
  • 16. Jacobson D.R., Pastore R.D., Yaghoubian R. i wsp.: Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N. Engl. J. Med. 1997; 336: 466-473.
  • 17. Stein T.D., Johnson J.A.: Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J. Neurosci. 2002; 22: 7380-7388.
  • 18. Askanas V, Engel W.K., McFerrin J., Vattemi G.: Transthyretin Vall22Ile, accumulated AB, and inclusion-body myositis aspects in cultured muscle. Neurology 2003; 61: 257-260.
  • 19. Askanas V., Engel W.K.: Sporadic inclusion-body myositis as a degenerative disease: role of AB, protein misfolding, and proteasome inhibition. Neurology w druku 2006.
  • 20. Dalakas M.C.: Inflammatory, immune, and viral aspects of inclusion-body myositis. Neurology w druku 2006.
  • 21. Engel WK., Askanas V: Treatment of inclusion-body myositis and hereditary inclusion-body myopathy with reference to pathogenic mechanisms: personal experience. W: Askanas V, Serratrice G., Engel WK. (red.): Inclusion-Body Myositis and Myopathies. Cambridge University Press, 1998: 351-382.
  • 22. Engel W.K., Haginoya K., Alvarez R.B. i wsp.: Sporadic inclusion-body myositis (s-IBM) in an HTLV-1-positive Iranian Muslim. Neurology 1997; 48: 124.
  • 23. Cupler E.J., Leon-Monzon M., Miller J. i wsp.: Inclusion body myositis in HIV-1 and HTLV-1 infected patients. Brain 1996; 119 (cz. 6): 1887-1893.
  • 24. Ozden S., Gessain A., Gout O., Mikol J.: Sporadic inclusion body myositis in a patient with human T cell leukemia virus type 1-associated myelopathy. Clin. Infect. Dis. 2001; 32: 510-514.
  • 25. Semino-Mora C., Dalakas M.C.: Rimmed vacuoles with β-amyloid and ubiquitinated filamentous deposits in the muscles of patients with long-standing denervation (postpoliomyelitis muscular atrophy): similarities with inclusion body myositis. Hum. Pathol. 1998; 29: 1128-1133.
  • 26. Engel W.K., Cunningham G.G.: Rapid examination of muscle tissue. An improved trichrome method for fresh-frozen biopsy sections. Neurology 1963; 13: 919-923.
  • 27. Askanas V, Engel W.K., Alvarez R.B.: Enhanced detection of congored-positive amyloid deposits in muscle fibers of inclusion body myositis and brain of Alzheimer’s disease using fluorescence technique. Neurology 1993: 43: 1265-1267.
  • 28. Askanas V, Alvarez R.B., Mirabella M., Engel W.K.: Use of anti-neurofilament antibody to identify paired-helical filaments in inclusion-body myositis. Ann. Neurol. 1996; 39: 389-391.
  • 29. Mirabella M., Alvarez R.B., Bilak M. i wsp.: Difference in expression of phosphorylated tau epitopes between sporadic inclusion-body myositis and hereditary inclusion-body myopathies. J. Neuropathol. Exp. Neurol. 1996; 55: 774-786.
  • 30. Ksiezak-Reding H., Dickson D.W., Davies P., Yen S.H.: Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles. Proc. Natl Acad. Sci. US A 1987; 84: 3410-3414.
  • 31. Askanas V, Serdaroglu P., Engel W.K., Alvarez R.B.: Immunocytochemical localization of ubiquitin in inclusion body myositis allows its light-microscopic distinction from polymyositis. Neurology 1992; 42: 460-461.
  • 32. Prayson R.A., Cohen M.L.: Ubiquitin immunostaining and inclusion body myositis: study of 30 patients with inclusion body myositis. Hum. Pathol. 1997; 28: 887-892.
  • 33. Hilton-Jones D.: Inflammatory muscle diseases. Curr. Opin. Neurol. 2001; 14: 591-596.
  • 34. Askanas V, Serdaroglu P., Engel W.K., Alvarez R.B.: Immunolocalization of ubiquitin in muscle biopsies of patients with inclusion body myositis and oculopharyngeal muscular dystrophy. Neurosci. Lett. 1991; 130: 73-76.
  • 35. Fidzianska A., Rowinska-Marcinska K., Hausmanowa-Petrusewicz I.: Coexistence of X-linked recessive Emery-Dreifuss muscular dystrophy with inclusion body myositislike morphology. Acta Neuropathol. (Berl.) 2004; 107: 197-203.
  • 36. Klein W.L.: ADDLs & protofibrils - the missing links? Neurobiol. Aging 2002; 23: 231-235.
  • 37. Askanas V, McFerrin J., Baque S. i wsp.: Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle. Proc. Natl Acad. Sci. US A 1996; 93: 1314-1319.
  • 38. Askanas V, McFerrin J., Alvarez R.B. i wsp.: βAPP gene transfer into cultured human muscle induces inclusion-body myositis aspects. Neuroreport 1997; 8: 2155-2158.
  • 39. McFerrin J., Engel W.K., Askanas V: Cultured muscle fibers from Iranian Jewish patients with quadriceps-sparing autosomal-recessive inclusion-body myopathy (AR1-IBM) express features of IBM phenotype. Neurology 2000; 54: 438.
  • 40. McFerrin J., Engel WK., Askanas V: Impaired innervation of cultured human muscle overexpressing βAPP experimentally and genetically: relevance to inclusion-body myopathies. Neuroreport 1998; 9: 3201-3205.
  • 41. Alvarez R.B., Engel W.K., Askanas V: Ultrastructural abnormalities of neuromuscular junctions in sporadic inclusion-body myositis. Neurology 2000; 54: 240-241.
  • 42. Terry R.D.: The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol. 1996; 55: 1023-1025.
  • 43. Jin L.W, Hearn M.G., Ogburn C.E. i wsp.: Transgenic mice over-expressing the C-99 fragment of betaPP with an alpha-secretase site mutation develop a myopathy similar to human inclusion body myositis. Am. J. Pathol. 1998: 153: 1679-1686.
  • 44. Fukuchi K., Pham D., Hart M. i wsp.: Amyloid-beta deposition in skeletal muscle of transgenic mice: possible model of inclusion body myopathy. Am. J. Pathol. 1998; 153: 1687-1693.
  • 45. Vattemi G., Engel W.K., McFerrin J. i wsp.: Presence of BACE1 and BACE2 in muscle fibres of patients with sporadic inclusion-body myositis. Lancet 2001; 358: 1962-1964.
  • 46. Vattemi G., Engel W.K., McFerrin J. i wsp.: BACE1 and BACE2 in pathologic and normal human muscle. Exp. Neurol. 2003; 179: 150-158.
  • 47. Askanas V, Engel WK., Yang C.C. i wsp.: Light and electron microscopic immunolocalization of presenilin 1 in abnormal muscle fibers of patients with sporadic inclusion-body myositis and autosomal-recessive inclusion-body myopathy. Am. J. Pathol. 1998; 152: 889-895.
  • 48. Vattemi G., Kefi M., Engel W.K., Askanas V: Nicastrin, a novel protein participating in amyloid-β production, is overexpressed in sporadic inclusion-body myositis muscle. Neurology 2003; 60: 315.
  • 49. McFerrin J., Engel W.K., Leclerc N., Askanas V: Combined influence of amyloid-β precursor protein (AβPP) gene transfer and cholesterol excess on cultured normal human muscle fibers. Neurology 2002; 58: 489.
  • 50. Yang C.C., Askanas V, Engel WK., Alvarez R.B.: Immunolocalization of transcription factor NF-kB in inclusion-body myositis muscle and at normal human neuromuscular junctions. Neurosci. Lett. 1998; 254: 77-80.
  • 51. Broccolini A., Engel W.K., Alvarez R.B., Askanas V: Redox factor-1 in muscle biopsies of patients with inclusion-body myositis. Neurosci. Lett. 2000; 287: 1-4.
  • 52. Askanas V, Engel WK.: Sporadic inclusion-body myositis and its similarities to Alzheimer disease brain. Recent approaches to diagnosis and pathogenesis, and relation to aging. Scand. J. Rheumatol. 1998; 27: 389-405.
  • 53. Garcia-Mata R., Gao Y.S., Sztul E.: Hassles with taking out the garbage: aggravating aggresomes. Traffic 2002; 3: 388-396.
  • 54. Kopito R.R., Ron D.: Conformational disease. Nat. Cell Biol. 2000; 2: E207-E209.
  • 55. McNaught K.S., Belizaire R., Isacson O. i wsp.: Altered proteasomal function in sporadic Parkinson’s disease. Exp. Neurol. 2003; 179: 38-46.
  • 56. Keller J.N., Hanni K.B., Markesbery W.R.: Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 2000; 75: 436-439.
  • 57. Schmidt T, Lindenberg K.S., Krebs A. i wsp.: Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann. Neurol. 2002; 51: 302-310.
  • 58. Borden K.L.: Structure/function in neuroprotection and apoptosis. Ann. Neurol. 1998; 44 (3 supl. 1): S65-S71.
  • 59. Maiti N.R., Surewicz W.K.: The role of disulfide bridge in the folding and stability of the recombinant human prion protein. J. Biol. Chem. 2001; 276: 2427-2431.
  • 60. Mori K.: Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 2000; 101: 451-454.
  • 61. Lee A.S.: The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 2001; 26: 504-510.
  • 62. Kaufman R.J.: Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 2002; 110: 1389-1398.
  • 63. Vattemi G., Engel W.K., McFerrin J., Askanas V: Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am. J. Pathol. 2004; 164: 1-7.
  • 64. Voges D., Zwickl P., Baumeister W.: The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 1999; 68: 1015-1068.
  • 65. Ciechanover A., Brundin P.: The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 2003; 40: 427-446.
  • 66. Berke S.J., Paulson H.L.: Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr. Opin. Genet. Dev. 2003; 13: 253-261.
  • 67. Bennett E.J., Bence N.F., Jayakumar R., Kopito R.R.: Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates preceded inclusion body formation. Mol. Cell 2005; 17: 351-365.
  • 68. Johnston J.A., Ward C.L., Kopito R.R.: Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 1998; 143: 1883-1898.
  • 69. Wigley W.C., Fabunmi R.P., Lee M.G. i wsp.: Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 1999; 145: 481-490.
  • 70. Kopito R.R.: Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000; 10: 524-530.
  • 71. Fratta P., Engel WK., Askanas V: Novel identification of aggresomes in sporadic inclusion-body myositis (s-IBM) muscle fibers suggests that inhibition of 26S/20S proteasome and misfolded proteins play a pathogenic role. Ann. Neurol. 2003; 54: 845.
  • 72. Fratta P., Engel WK., Askanas V: Proteasome abnormalities participate in the pathogenesis of sporadic inclusion body myositis (s-IBM). Neurology 2004; 62: 168.
  • 73. Fratta P., Engel W.K., McFerrin J. i wsp.: Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. Am. J. Pathol. 2005; 167: 517-526.
  • 74. van Leeuwen F.W., de Kleijn D.P., van den Hurk H.H. i wsp.: Frameshift mutants of β amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients. Science 1998; 279: 242-247.
  • 75. van Leeuwen EW, Fischer D.F., Kamel D. i wsp.: Molecular misreading: a new type of transcript mutation expressed during aging. Neurobiol. Aging 2000; 21: 879-891.
  • 76. Fratta P., Engel W.K., van Leeuwen F.W. i wsp.: Mutant ubiquitin UBB+1 is accumulated in sporadic inclusion-body myositis muscle fibers. Neurology 2004; 63: 1114-1117.
  • 77. Lindsten K., de Vrij F.M.S., Verhoef L.G. i wsp.: Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J. Cell Biol. 2002; 157: 417-427.
  • 78. Lee S.J.: Regulation of muscle mass by myostatin. Annu. Rev. Cell Dev. Biol. 2004; 20: 61-86.
  • 79. Wojcik S., Engel WK., McFerrin J., Askanas V: Myostatin is increased and complexes with amyloid-beta within sporadic inclusion-body myositis muscle fibers. Acta Neuropathol. (Berl.) 2005; 110: 173-177.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-50d8bb7e-c90b-4627-9585-ad7bdf7a6ed1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.