Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 24 | 172 - 182

Article title

WETTABILITY OF CHITOSAN-MODIFIED AND LIPID/POLYPEPTIDE-COATED PEEK SURFACES

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present paper, cold plasma-activated and chitosan-coated polyetheretherketone (PEEK) was covered with thin films of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, cholesterol, cyclosporine A, and their mixtures using the Langmuir-Blodgett technique. The thermodynamic function, i.e., surface free energy, of those systems was determined based on the contact angle hysteresis (CAH) approach. This parameter seems to be essential in determination of cell adhesion to polymeric materials and molecular interactions with living tissues. The obtained results show that the wettability and surface free energy of PEEK can be changed depending on the composition of the coating

Contributors

  • Department of Physical Chemistry, Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University
  • Department of Physical Chemistry, Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University
  • Department of Physical Chemistry, Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University
  • Department of Physical Chemistry, Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University

References

  • [1] Sagomonyants K.B., Jarman-Smith M.L., Devine J.N., Aronow M.S., Gronowicz G.A., (2008) The in vitro response of human osteoblasts to polyetheretherketone (PEEK) substrates compared to commercially pure titanium. Biomaterials, 29, 1563-1572. DOI:10.1016/j.biomaterials.2007.12.001.
  • [2] Franz S., Rammelt S., Scharnweber D., Simon J.C., (2011) Immune responses to implants – A review of the implications for the design of immunomodulatory biomaterials. Biomaterials, 32, 6692-6709. DOI: 10.1016/j.biomaterials.2011.05.078.
  • [3] Ma R., Tang T., (2014) Current strategies to improve the bioactivity of PEEK. International Journal of Molecular Science, 15, 5426-5445. DOI: 10.3390/ijms15045426
  • [4] Briem D., Strametz S., Schrooder K., Meenem N.M., Lehmann W., Linhart W., Ohl A., Reuger J.M., (2005) Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. Journal of Materials Science: Materials in Medicine, 16, 671-677. DOI: 10.1007/s10856-005-2539-z.
  • [5] Henneuse-Boxus C., Duliere E., Marchand-Brynaert J., (2001) Surface functionalization of PEEK films using photochemical routes. European Polymer Journal, 37, 9-18. DOI:10.1016/S0014-3057(00)00094-X.
  • [6] Shaughnessy C., Zhou Z., Noh H., Vogler E.A., Donahue H.J., (2008) Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials, 29, 1776-1784. DOI: 10.1016/j.biomaterials.2007.12.026.
  • [7] Ourahmoune R., Salvia M., Mathia T.G., Mesrati N., (2014) Surface morphology and wettability of sandblasted PEEK and its composites. The Journal of Scanning Microscopy, 36, 64-75. DOI: 10.1002/sca.21089.
  • [8] Poulsson A.H., Eglin D., Zeiter S., Camenisch K., Agarwal Y., Nehrbass D., Wilson J., Richards R.G., (2014) Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model. Biomaterials, 35, 3717-3728. DOI: 10.1016/j.biomaterials.2013.12.056.
  • [9] Han C.M., Lee E.J., Kim H.E., Koh Y.H., Ha Y., Kuh S.U., (2010) The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials, 31, 3465-3470. DOI: 10.1016/j.biomaterials.2009.12.030.
  • [10] Lee S.D., Kenneth M.D., Safranski D.L., Chang W.A., Macedo A.E., Lin A.S., Boothby J.M., Whittingslow D.C., Carson R.A., Guldberg R.E., Gall K., (2010) High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomaterialia, 13, 159-167. DOI: 10.1016/j.biomaterials.2009.12.030.
  • [11] Wiącek A.E., Terpiłowski K., Jurak M., Worzakowska M., (2016) Effect of low-temperature plasma on chitosan-coated PEEK polymer characteristics. European Polymer Journal, 78, 1-13. DOI: 10.1016/j.eurpolymj.2016.02.024.
  • [12] Khor E., Lim L.Y., (2003) Implantable applications of chitin and chitosan. Biomaterials, 242339-2349. DOI: 10.1016/S0142-9612(03)00026-7.
  • [13] Jia W.T., Zhang X., Luo S.H., Liu X., Huang W.H., Rahaman M.N., Day D.E., Zhang C.Q., Xie Z.P., Wang J.Q., (2010) Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomaterialia, 6, 812-819. DOI: 10.1016/j.actbio.2009.09.011.
  • [14] Caridade S.G., Merino E.G., Alves N.M., Mano J.F., (2012) Bioactivity and viscoelastic characterization of chitosan/bioglass(R) composite membranes. Macromolecular Bioscience, 12, 1106-13. DOI: 10.1002/mabi.201200036.
  • [15] Caridade S.G., Merino E.G., Alves N.M., Bermudez Vde Z., Boccaccini A.R., Mano J.F., (2013) Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. Journal of the Mechanical Behaviour of the Biomedical Materials, 20, 173-83. DOI: 10.1016/j.jmbbm.2012.11.012.
  • [16] Zhitomirsky D., Roether J.A., Boccaccini A.R., Zhitomirsky I., (2009) Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications. Journal of Materials Processing Technology, 209, 1853-1860. DOI: 10.1098/rsif.2010.0156.focus.
  • [17] Willumeit R., Schutser A., Illiev P., Linser S., Feyerabend F., (2007) Phospholipids as implant coatings. Journal of. Material Science. Materials in Medicine, 18, 367-380 . DOI: 10.1007/s10856-006-0702-9.
  • [18] Tateishi T., Kyomoto M., Kakinoki S., Yamaoka T., Ishihara K., (2014) Reduced platelets and bacteria adhesion on poly(etheretherketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. Journal of Biomedical Materials Research Part A, 102, 1342-1349. DOI: 10.1002/jbm.a.34809.
  • [19] Iwasaki Y., Ishihara K., (2012) Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Science and Technology of Advanced Materials,13, 064101-1-14. DOI: 10.1088/1468-6996/13/6/064101.
  • [20] Jurak M., Wiącek A.E., Terpiłowski, K., (2016) Properties of PEEK-supported films of biological substances prepared by the Langmuir-Blodgett technique. Colloids and Surfaces A, 510, 263-274. DOI: 10.1016/j.colsurfa.2016.09.048.
  • [21] Jurak M., Wiącek A.E., Mroczka R., Łopucki R., (2017) Chitosan/phospholipid coated polyethyleneterephthalate (PET) polymer surfaces activated by air plasma. Colloids and Surfaces A, 532, 155-164. DOI: 10.1016/j.colsurfa.2017.05.061.
  • [22] Liefeith K., Frant M., (2018) Archaeal tetraether lipid coatings - A strategy for the development of membrane analog spacer systems for the site-specific functionalization of medical surfaces. Biointerphases, 13, 011004-1-14. DOI: 10.1116/1.5008816.
  • [23] De Leo V., Mattioli-Belmonte M., Cimmarusti M.T., Panniello A., Dicarlo M., Milano F., Agostiano A., De Giglio E., Catucci L., (2017) Liposome - modified titanium surface: A strategy to locally deliver bioactive molecules. Colloids and Surfactants. B,158,387-396. DOI: 10.1016/j.colsurfb.2017.07.00.
  • [24] Willumeit R., Feyerabend F., Kamusewitz H., Schossig M., (2003) Biological multi-layer systems as implant surface modification. Materialwissenschaft und Werkstofftechnik, 34,1084-1093. DOI: 10.1002/mawe.200300718.
  • [25] Rivero R., Alustiza F., Capella V., Liaudat C., Rodriguez N., Bosch P., Barbero C., Rivalola C., (2017) Physicochemical properties of ionic and non-ionic biocompatible hydrogels in water and cell culture conditions: Relation with type of morphologies of bovine fetal fibroblasts in contact with the surfaces. Colloids and Surfaces B: Biointerfaces, 158, 488-497. DOI: 10.1016/j.colsurfb.2017.07.03.
  • [26] Przykaza K., Jurak M., Wiącek A.E., (2018) Wetting properties of chitosan-modified and plasma-treated PEEK. Progress on Chemistry and Application of Chitin and its Derivatives, 13, 159-169. DOI:10.15259.PCACD.23.16.
  • [27] Wnętrzak A., Makyła-Juzak K., Chachaj-Brekiesz A., Lipiec E., Romeu N.V., Dynarowicz-Łątka P., (2018) Cyclosporin A distribution in cholesterol-sphingomyelin artificial membranes modeled as Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 166, 286-294. DOI: 10.1016/j.colsurfb.2018.03.031
  • [28] Chibowski E., (2003) Surface free energy of a solid from contact angle hysteresis. Advances in Colloids and Interface Science, 103, 149-172. DOI: 10.1016/S0001-8686(02)00093-3.
  • [29] Gan K., Liu H., Jiang L., Liu X., Song X., Niu D., Chen T., Liu C., (2016) Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone. Journal of Dental Materials, 32, 10263-10274. DOI: 10.1016/j.dental.2016.08.215.
  • [30] Ha S.W., Hauert R., Ernst K.H., Winter E., Wintermantel E., (1997) Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications. Surface and Coatings Technology, 96, 293-299. DOI: 10.1016/S0257-8972(97)00179-5.
  • [31] De Bartolo L., Gugluizza A., Morelli S., Cirillo B., Gordano A., Drioli E., (2004) Novel PEEK-WC membranes with lows plasma protein affinity related to surface free energy parameters. Journal of Material Science - Materials in Medicine, 15, 877-883. DOI: 10.1023/B:JMSM.0000036275.60508.50.
  • [32] Terpiłowski K., Jurak M., Wiącek A.E. (2018) Influence of nitrogen plasma treatment on the wettability of polyetheretherketone and deposited chitosan layers. Advanced Polymer Technology, 37, 1557-1569. DOI: 10.1002/adv.21813.
  • [33] Przykaza K., Woźniak K., Jurak M., Wiącek A.E. (2019) Wetting properties of polyetheretherketone plasma activated and biocoated surfaces. Colloids and Interfaces, 3, 1-19. DOI:10.3390/colloids3010040.
  • [34] El Taya N., Mark A.E., Vallat P., Brunne R.M., Testa B., van Gunsteren W.F., (1993) Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. Journal Medical Chemistry,36, 3757-3764. DOI:10.1021/jm00076a002

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-5075baa4-da04-4b79-9d2c-f60e9621f658
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.