Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2025 | 63 | 2 | 193-204

Article title

Bioprospecting of endophytes in medicinal plants for antifungal properties against Candida albicans (C.P.Robin) Berkhout – case study of Mitracarpus scaber Zucc. (Rubiaceae)

Content

Title variants

Languages of publication

EN

Abstracts

EN
Endophytic fungi are microorganisms that inhabit the living tissues of their host plants without causing harm to the host plant. They are a promising source of bioactive compounds with antimicrobial properties. This study investigated the antifungal activity of extracts of endophytic fungi (Aspergillus nidulans and Fusarium oxysporum) against Candida albicans conducted at the Department of Plant Science and Biotechnology, Bayero University, Kano, Nigeria. The sample was collected at the Botanical Garden, Bayero University, Kano. The antifungal properties were tested using the agar well diffusion method (1.0 mg/mL, 0.5 mg/mL, 0.25 mg/mL, 0.125 mg/mL, 0.625 mg/mL) for two different solvents, with Fluconazole as the positive control and distilled water as the negative control. The data was collected, and inhibition zones were determined. The result shows a dose-dependent increase in antifungal activity, with the highest inhibition zone observed at 1.0 mg/mL. Statistical analysis was conducted using ANOVA at P< 0.05. There was a significant difference between the concentrations and extracts (P<0.01).

Discipline

Year

Volume

63

Issue

2

Pages

193-204

Physical description

Contributors

author
  • Department of Plant Science and Biotechnology, Bayero University, Kano, Nigeria
  • Department of Plant Science and Biotechnology, Bayero University, Kano, Nigeria

References

  • [1] Andrews, J. M. (2001). Determination of minimum inhibitory concentration. Journal of Antimicrobial Chemotherapy, 48(supp_1), 5-16
  • [2] Bachmann, B. O., Li, S. M., & Hertweck, C. (2022). Secondary Metabolites of Aspergillus nidulans: Pathways and products. Journal of Natural Products, 85(10), 1782-1796
  • [3] Akpotu, M. O., & Abdul, A. O. (2021). Preliminary investigation on the extract of the fungal endophytes from Mitracarpus scaber for antimicrobial activity. Adamawa State University Journal of Scientific Research, 9(1), 8-13
  • [4] Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71-79
  • [5] El-Sayed, A. S. A., Shindia, A. A., AbouZid, D. M., Yassin, M. A., Ali, G. S., & Sitohy, M. Z. (2023). Bioactive compounds and biomedical applications of endophytic fungi: A comprehensive review. Microbial Cell Factories, 22(1), 39
  • [6] Hemeda, M. F., Kheiralla, Z. M. H., Abo-Ghalia, H. H., Elaasser, M. M., & Ibrahim, S. Y. (2022). Evaluation of antimicrobial bioactive compounds from endophytic fungi isolated from Moringa oleifera. Journal of Scientific Research in Science, 39(2), 102-129
  • [7] El-Sayed, E.-S. R., Baskaran, A., Pomarańska, O., Mykhailova, D., Dunal, A., Dudek, A., Satam, S., Strzała, T., Łyczko, J., Olejniczak, T., & Boratyński, F. (2024). Bioprospecting endophytic fungi of forest plants for bioactive metabolites with antibacterial, antifungal, and antioxidant potentials. Molecules, 29(19), 4746. https://doi.org/10.3390/molecules29194746
  • [8] Lee, Y., Puumala, E., Robbins, N., & Cowen, L. E.(2021). Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chemical Review, 121(6), 3390-3411
  • [9] Pappas, P.G., Lionakis, M. S., Arendrup, M. C., Ostroky-Zeichner, L., & Kullberg, B. J. (2018). Invasive Candidiasis. Natural Reviews Disease Primers, 4(1), Article 18026
  • [10] Rodríguez-Tudela, J. L., Almirante, B., Rodríguez-Pardo, D., Laguna, F., Donnelly, J. P., & Peman, J. (2020). Azole resistance in Candida albicans: A growing concern. Journal of Medical Microbiology, 69(4), 500-507
  • [11] Rumidatul, A., Rahmawati, N., & Sunarya, S. (2021). Production of Secondary metabolites and their antibacterial and antioxidant activity during the growth period of endophytic fungi isolated from gall rust Sengon plants. Pharmacognosy Journal, 13(2), 325-331
  • [12] Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Latha, L. Y. (2011). Extraction, isolation, and characterization of bioactive compounds from plant extracts. African Journal of Traditional, Complementary, and Alternative Medicines 8(1), 1-10
  • [13] Yakasai, B.D. & Yunusa, A.Y. & Fatima, M.I. & Hotoro, Sani Also & Salisu, Abba & Aminu, Mohammed & Muhammad, Murtala Namadina & Maryam, S.I.. (2024). Phytochemical and Mosquito Repellent Activities of Citrus sinensis, Citrus reticulate, and Citrus limon Leaves. Dutse Journal of Pure and Applied Sciences 10, 33-39.10.4314/dujopas.v10i2b.3
  • [14] Astvad KMT, Johansen HK, Røder BL, Rosenvinge FS, Knudsen JD, Lemming L, Schønheyder HC, Hare RK, Kristensen L, Nielsen L, Gertsen JB, Dzajic E, Pedersen M, Østergård C, Olesen B, Søndergaard TS, Arendrup MC. (2018). Update from a 12-Year Nationwide Fungemia Surveillance: Increasing Intrinsic and Acquired Resistance Causes Concern. J Clin Microbiol. 56(4): e01564-17. https://doi.org/10.1128/JCM.01564-17
  • [15] Deshmukh, S. K., Gupta, M. K., Prakash, V., & Saxena, S. (2018). Endophytic fungi: A source of potential antifungal compounds. Journal of Fungi, 4(3), 77. https://doi.org/10.3390/jof4030077
  • [16] Gunatilaka, A. A. L. (2006). Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 69(3), 509-526. https://doi.org/10.1021/np058128n
  • [17] Kusari, S., Hertweck, C., & Spiteller, M. (2012). Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chemical Biology, 19(7), 792-798. https://doi.org/10.1016/j.chembiol.2012.06.004
  • [18] Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • [19] Akbar Z, Aamir M, Saleem Z, Niazi MRK, Ejaz H, Alruwaili M, Abosalif K. (2025). Antifungal Resistance Among Candida Species: Diagnostic and Clinical Challenges in Specialized Cancer Care Hospital of Lahore. J Clin Lab Anal. 39(9): e70022. doi: 10.1002/jcla.70022
  • [20] White, T. C., Marr, K. A., & Bowden, R. A. (1997). Development of fluconazole resistance in Candida albicans causing disseminated infection in a patient undergoing marrow transplantation. Clinical Infectious Diseases, 25(4), 908-910. https://doi.org/10.1086/513768
  • [21] Yassien, M., Al-Harbi, N., & El-Badawy, M. F. (2015). Mechanisms of resistance to fluconazole in Candida albicans clinical isolates from HIV-infected patients with oropharyngeal candidiasis. Brazilian Journal of Microbiology, 46(2), 535-545. https://doi.org/10.1590/S1517-838246220140104

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-4f59df39-6ef1-4489-849b-d67d3b8c524b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.