PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 210 - 226
Article title

PREPARATION AND CHARACTERIZATION OF CHITOSAN-AGAR FILMS

Content
Title variants
Languages of publication
EN
Abstracts
EN
Hydrogel films composed of chitosan and agar or chitosan, agar and honey/bee pollen were prepared; they could be used as active wound dressings. During this study, various types of gel films were prepared using chitosan with different molecular weights and ratios of the two biopolymers. In addition, compositions with different amounts of honey or bee pollen were obtained. The selected samples were characterized by determining typical properties that are important for wound dressings. The best twocomponent films had a chitosan to agar weight ratio of 2:1. From among the examined tri-component films, the 2:1:0.5 weight ratio of chitosan, agar and 50 wt% honey solution was the best composition.
Keywords
Publisher

Year
Volume
25
Pages
210 - 226
Physical description
Contributors
  • Wroclaw University of Science and Technology, Faculty of Chemistry
  • Wroclaw University of Science and Technology, Faculty of Chemistry
References
  • [1] Rahimi M., Bahojb Noruzi E., Sheykhsaran E., Ebadi B., Kariminezhad Z., Molaparast M., Ghanabari Mehrabani M., Mehramouz B., Yousefi M., Ahmadi R., Yousefi B., Ganbarov K., Kamounah F.S., Shafiei-Irannejad V., Samadi Kafil H.; (2020) Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings, Carbohydrate polymers, 231, 115696. DOI:10.1016/j.carbpol.2019.115696
  • [2] Moeini A., Pedram P., Makvandi P., Malinconico M., Gomez d’Ayala G.; (2020) Wound healing and Antimicrobial effect of active Secondary Metabolites in Chitosan-based Wound dressings: A review, Carbohydrate polymers, DOI: 10.1016/j.carbpol.2020.115839
  • [3] Boateng J.S., Kerr H.M., Stevens H.N., Eccleston G.M.; (2008) „Wound healing dressings and drug delivery systems: A review”, J. Pharm. Sci., 97 (8), 2892–2923. DOI: 10.1002/jps.21210
  • [4] Mast B.A., Schultz G.S.; (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds, Wound Repair Regen., 4 (4), 411-420. DOI: 10.1046/j.1524-475X.1996.40404.x
  • [5] Skórkowska-Telichowska K., Bugajska-Prusak A., Pluciński P., Rybak Z., Szopa J;. (2009) „Fizjologia i patologia przewlekle niegojących się owrzodzeń oraz sposoby ich miejscowego leczenia w świetle współczesnej wiedzy medycznej”, Dermatologia Prakt., 5, 15–29.
  • [6] Karpiński R., Górniak B., Maksymiuk J.; (2015) „Biomedyczne zastosowania polimerów - materiały opatrunkowe”, rozdział w książce Nowoczesne trendy w medycynie, Lublin: Fundacja na rzecz promocji nauki i rozwoju TYGIEL, 18–32.
  • [7] Jacob J., Haponiuk J.T., Thomas S., Gopi S.; (2018) Biopolymer based nanomaterials in drug delivery systems: A review, Materials today, 9, 43-55. DOI: 10.1016/j.mtchem.2018.05.002
  • [8] Aravamudhan A., Ramos D.M., Nada A.A., Kumbar S.G.; (2014) „Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications”, Chapter 4 in Kumbar S., Laurencin C., and Deng M. (eds.) Natural and Synthetic Biomedical Polymers, Brazil Elsevier Inc., 67–89.
  • [9] Mucha M.; (2010) „Chitozan wszechstronny polimer ze źródeł odnawialnych”, Warszawa: Wydawnictwa Naukowo-Techniczne.
  • [10] Nunthanid J., Puttipipatkhachorn S., Yamamoto K., Garnet E., Nunthanid J., Puttipipatkhachorn S.; (2001) „Physical Properties and Molecular Behavior of Chitosan Films”, Drug Dev. Ind. Pharm., 27 (2), 143–157. DOI: 10.1081/DDC-100000481
  • [11] Abdul Khalil H.P.S., et al.; (2018), „A review of extractions of seaweed hydrocolloids: Properties and applications”, Express Polym. Lett., 12 (4), 296–317. DOI: 10.3144/expresspolymlett.2018.27
  • [12] Armisén R., Galatas F.; (2009) „Agar”, in Phillips G.O. and Williams P.A. (eds.) Handbook of Hydrocolloids: Second Edition, Padstow, 82–107.
  • [13] Muszyńska B., Jękot B., Topolska-Pasek M., Rzewińska A.; (2016) „Właściwości prozdrowotne węglowodanów występujących w algach”, Bot. Farm., 72 (7), 1–13.
  • [14] Rivadeneira J., Audisio M.C., Gorustovich A.; (2018) „Films based on soy proteinagar blends for wound dressing: Effect of different biopolymer proportions on the drug release rate and the physical and antibacterial properties of the films”, J. Biomater. Appl., 32 (9), 1231–1238. DOI: 10.1177/0885328218756653
  • [15] Yang W., Mou S., Bao L., Tang S., Mao X.; (2008) „Agar/collagen membrane as skin dressing for wounds”, Biomed. Mater., 3 (4), 1–7. DOI: 10.1088/1748-6041/3/4/044108
  • [16] Jagiełło J., Kołeczek E., Horochowska M., Zdrojewicz Z.; (2018) „Bursztynowe źródło zdrowia – zastosowanie miodu we współczesnej medycynie”, Med. Rodz., 21 (1), 64–69. DOI: 10.25121/MR.2018.21.1.64
  • [17] Matzen R.D., Leth-Espensen J.Z., Jansson T., Nielsen D.S., Lund M.N., Matzen S.; (2018) „The Antibacterial Effect in Vitro of Honey Derived from Various Danish Flora”, Dermatol. Res. Pract., 2018, 7021713: 1-10. DOI: 10.1155/2018/7021713
  • [18] Molan P., Rhodes T.; (2015) „Honey: A biologic wound dressing.”, Wounds, 27 (6), 141–151. PMID: 26061489
  • [19] Komosinska-Vassev K., Olczyk P., Kaźmierczak J., Mencner L., Olczyk K.; (2015) „Bee pollen: chemical composition and therapeutic application”, Evidence-Based Complement. Altern. Med., 2015, 1–6. DOI: 10.1155/2015/297425
  • [20] Kędzia B., Hołderna-Kędzia E.; (2016) „Skład i właściwości biologiczne pyłku kwiatowego zbieranego przez pszczoły ze szczególnym uwzględnieniem możliwości zastosowania go w kosmetyce”, Postępy Fitoter., 17 (2), 130–138.
  • [21] Fatrcová-Šramková K., Nôžková J., Kačániová M., Máriássyová M., Rovná K., Stričík M.; (2013) „Antioxidant and antimicrobial properties of monofloral bee pollen”, J. Environ. Sci. Heal., 48 (2), 133–138. DOI: 10.1080/03601234.2013.727664
  • [22] Pascoal A., Rodrigues S., Teixeira A., Feás X., Estevinho L.M.; (2014) „Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory”, Food Chem. Toxicol., 63, 233–239. DOI: 10.1016/j.fct.2013.11.010
  • [23] Wolska J.; (2016) Chitosan microspheres prepared by membrane emulsification for chromium removal from aqueous solutions, Progress on Chemistry and Application of Chitin and its Derivatives, 21, 203-216. DOI: 10.15259 /PCACD.21.22
  • [24] Wolska J.; (2017) Chitosan and chitosan-polyethylenimine microspheres prepared by membrane emulsification and their application for drug delivery systems, Progress on Chemistry and Application of Chitin and its Derivatives, 22, 220-235. DOI: 10.15259/PCACD.22.22
  • [25] Grzebyk M., Poźniak G.; (2005) Microbial fuel cells (MFCs) with interpolymer cation exchange membranes, Separation Science and Technology, 41 (3), 321-328. DOI: 10.1016/j.seppur.2004.04.009
  • [26] Blume I., Schwering P.J.F., Mulder M.H.V., Smolders C.A.; (1991) Vapour sorption and permeation properties of poly (dimethylsiloxane ) films, Journal of Membrane Science, 61, 85-97. DOI: 10.1016/0376-7388(91)80008-T
  • [27] Fiedot M., Karbownik I., Maliszewska I., Rac O., Suchorska-Woźniak P., Teterycz H.; (2015) Deposition of one-dimensional zinc oxide structures on polypropylene fabrics and their antibacterial properties, Textile Research Journal, 85 (13), 1340–1354 . DOI: 10.117/0040517514563716
  • [28] Ostrowska-Czubenko J., Pieróg M., Gierszewska M.; (2016) „Modyfikacja chitozanu - krótki przegląd”, Wiadomości Chem., 70(9–10), 657–679.
  • [29] Dini V., Salvo P., Janowska A., di Francesco F., Barbini A., Romanelli M.; (2015) „Correlation Between Wound Temperature Obtained With an Infrared Camera and Clinical Wound Bed Score in Venous Leg Ulcers”, Wounds, 27(10), 274–278. PMID: 26479211
  • [30] Tangsadthakun Ch., Kanokpanont S., Sanchavanakit N., Pichyangkura R., Banaprasert T., Tabata Y., Damrongsakkul S.; (2007) „The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds”, J. Biomater. Sci. Polym. Ed., 18(2), 147–163. DOI: 10.1163/156856207779116694
  • [31] Percival S.L., McCarty S., Hunt J.A., Woods E.J.; (2014) „The effects of pH on wound healing, biofilms, and antimicrobial efficacy”, Wound Repair Regen., 22(2), 174–186. DOI: 10.1111/wrr.12125
  • [32] Schneider L.A., Korber A., Grabbe S., Dissemond J.; (2007) „Influence of pH on wound-healing: A new perspective for wound-therapy?”, Arch. Dermatol. Res., 298(9), 413–420. DOI: 10.1007/s00403-006-0713-x
  • [33] Coma V., Deschamps A., Martial-Gros, A.; (2003) “Bioactive Packaging Materials from Edible Chitosan Polymer — Antimicrobial Activity Assessment on Dairy--Related Contaminants”, J. Food Sci., 68 (9), 2788–2792. DOI: 10.1111/j.1365-2621.2003.tb05806.x
  • [34] Dutta P. K., Tripath S., Mehrotra G. K., Dutta J.; (2009) “Perspectives for chitosan based antimicrobial films in food applications”, Food Chem., 114(4), 1173–1182. DOI: 10.1016/j.foodchem.2008.11.047
  • [35] Jeon Y.J., Park, P. J., Kim S.K.; (2001), “Antimicrobial effect of chitooligosaccharides produced by bioreactor”, Carbohyd. Polym., 44(1), 71–76. DOI: 10.1016/S0144-8617(00)00200-9
  • [36] No H.K., Park N.Y., Lee S.H., Meyers, S.P.; (2002), “Antibacterial activity of chitosans and chitosan oligomers with different molecular weights”, Int. J. Food Microbiol., 74(1-2), 65–72. DOI: 10.1016/S0168-1605(01)00717-6
  • [37] Coma V., Martial-Gros A., Garreau S., Copinet A., Salin F., Deschamps A.; (2002), “Edible Antimicrobial Films Based on Chitosan Matrix”, J. Food Sci., 67(3), 1162-1169. DOI: 10.1111/j.1365-2621.2002.tb09470.x
  • [38] Raafat D., von Bargen K., Haas A., Sahl H.G.; (2008), “Insights into the Mode of Action of Chitosan as an Antibacterial Compound”, Appl. Environ. Microbiol., 74(23), 3764–3773. DOI: 10.1128/AEM.02290-08
  • [39] Tsai G.J., Su W.H., (1999), “Antibacterial activity of shrimp chitosan against Escherichia coli”, J. Food Prot., 62, 239– 243. DOI: 10.4315/0362-028X-62.3.239
  • [40] Sudarshan N.R., Hoover D.G., Knorr D.; (1992), “Antibacterial action of chitosan”, Food Biotechnol., 6, 257–272 . DOI: 10.1080/08905439209549838
  • [41] Sebti I., Martial-Gros A., Carnet-Pantiez A., Grelier S., Coma V.; (2005), “Chitosan Polymer as Bioactive Coating and Film against Aspergillus niger Contamination”, J. Food Sci., 70(2), M100–M104. DOI: 10.1111/j.1365-2621.2005.tb07098.x
  • [42] Cuero R.G., Osuji G., Washington A.; (1991), “N-carboxymethylchitosan inhibition of aflatoxin production: Role of zinc”, Biotechnol. Lett., 13(6), 441-444. DOI: 10.1007/BF01030998
  • [43] Roller S., Covill N.; (1999), “The antifungal properties of chitosan in laboratory media and apple juice”, Int. J. Food Microbiol., 47(1-2), 67-77. DOI: 10.1016/S0168-1605(99)00006-9
  • [44] Khan F, Lee J.W, Pham D.T.N, Kim Y.M.; (2019), “Chitooligosaccharides as Antibacterial, Antibiofilm, Antihemolytic and Anti-Virulence Agent against Staphylococcus aureus”, Curr Pharm Biotechnol., 20(14), 1223–1233. DOI: 10.2174/1389201020666190902130722
  • [45] Wang G.H.; (1992), “Inhibition and inactivation of five species of foodborne pathogens by chitosan”, J. Food Prot., 55, 916–919. DOI: 10.4315/0362-028X-55.11.916.
  • [46] Giesbrecht P., Wecke J., Reinicke B.; (1976)“On the morphogenesis of the cell wall of staphylococci”, Int Rev Cytol., 44, 225–318 . DOI:10.1016/S0074-7696(08)61651-4
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-4f2977a2-3bc9-48e2-a295-0f854024b35d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.