Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 167 | 86-107

Article title

Light-Trap Catch of Turnip Moth (Agrotis segetum Den. & Schiff.) Influenced by the Sun’s and Moon’s Characteristics

Content

Title variants

Languages of publication

EN

Abstracts

EN
The study examines the effect of Sun and Moon characteristics on hourly light-trap catch of Agrotis segetum Den. & Schiff. (Lepidoptera, Noctuidae). A Járfás-type fractionating light-trap operated in Kecskemét, Hungary, between 1967 and 1969, from March to the end of November. This light-trap catch of insects separately every night from 6 p.m. to 4 a.m. (UT). We examined the data of the Turnip moth (Agrotis segetum Den & Schiff.) in connection with the characteristics of the Sun and the Moon. There were working up the data of 5,712 moths in connection with the 11 characteristics of Sun and Moon. The following Sun’s and Moon’ characteristics were taken into account: Night sky polarization originated by the Sun and Moon, Gravitation potential of the Sun and Moon, Altitude of the Sun’s Arago- and Moon’s Babinet point above horizon, Collecting distance, Altitude of the Moon above horizon, Moonlight, Polarized moonlight. It was found that: The gravity of the Sun’s and the Moon’s has a greater effect than their night sky polarization. An important influencing factor is the position of the Sun's Arago point above the horizon, but the Moon's Babinet point has smaller effect. We have shown that higher values of polarized moonlight have a higher catch in the Last Quarter. A new result is that the reasons for the high catch in the First and especially the Last Quarter, in addition to the maximum value of polarized moonlight, are the maximum celestial polarization from the Moon and the maximum suction effect of gravity. Our most important new result is that the effect of the Sun on results of light trapping is stronger than that of the Moon, not only at dusk and dawn, but at all hours of the night.

Keywords

Discipline

Year

Volume

167

Pages

86-107

Physical description

Contributors

  • Eötvös Loránd University, Savaria Campus. Savaria Science Centre, Department of Geography, H-9701 Szombathely, Károlyi Gáspár Square 4, Hungary
  • Eötvös Loránd University, Savaria Campus. Savaria Science Centre, Department of Geography, H-9701 Szombathely, Károlyi Gáspár Square 4, Hungary
author
  • Eötvös Loránd University, Savaria Campus. Savaria Science Centre, Department of Geography, H-9701 Szombathely, Károlyi Gáspár Square 4, Hungary
author
  • Biosecurity Tasmania, 3 Sonata Place Kirwan, 4817, Australia
author
  • Drem Innovation and Consulting Ltd, 1033 Budapest, Szentendrei út 93, Hungary

References

  • [1] V.B. Tshernyshev, Time of fly of the insects into light (in Russian). Zool. Zhurn. 40(7) (1961) 1009-1018
  • [2] L. Nowinszky, Z. Mészáros, J. Puskás, The hourly distribution of moth species caught by a light-trap. Applied Ecology and Environmental Research, 5(1) (2007) 103-107
  • [3] J. Bowden, B.M. Church, The influence of moonlight on catches of insects in light-traps in Africa. Part II. Bull. Ent. Res. 63 (1973) 129-142
  • [4] S.N. Vaishampayan, R. Verma, Influence of moon light and lunar periodicity on the light trap catches of gram podborer, Heliothis armigera (Hubner) moths. Indian J. Ent. 44(3) (1982) 206-212
  • [5] J.L. Yela, M. Holyoak, Effects of moonlight and meteorological factors on light and bait trap catches of Noctuid moths (Lepidoptera: Noctuidae). Environ. Entomol. 26(6) (1997) 1283-1290.
  • [6] G. Brehm, Diversity of geometrid moths in a mountain rainforest in Ecuador. Dissertation zur Erlangung des Doktorgrades an der Fakultät Biologie /Chemie/ Geowissenschaften der Universität Bayreuth. (2002) 203.
  • [7] P. Jeyakumar, S. Chander, A. Sing, M.C. Hat, D. Monga D., Effects of light trap and lunar cycle on the insects of cotton (Gossypium hirsutum) ecosystem. Indian Journal of Agricultural Sciences 77(5) (2007) 327-328
  • [8] J. Papp, J., A. Vojnits, A., Zoological collections by the Hungarian Natural History Museum in Korea. Fol. Ent. Hung., 19 (1976) 59-74.
  • [9] D. Duviard, Flight activity of Belastomatidae in central Ivory Coast. Oecologia 15 (1974) 321-328
  • [10] J. Bowden, M.G. Jones, Monitoring wheat bulb fly, Delia coarctata (Fallén) (Diptera: Anthomyiidae), with light-traps. Bull. Ent. Res. 69 (1979) 129-139
  • [11] R. Saroja, S. Raguraman, K.S. Paramasivan, Influence of lunar phase on green leafhopper (GLH) incidence. Int. Rice Res. Newsl. 15(6) (1990) 23-24
  • [12] K. Ito, H. Sugiyama, N.M.N.b.N. Salleh, Ch.P. Min, Effect of lunar phase on light trap catches of the Malayan black rice bug, Scotinophara coarctata (Heteroptera: Pentatomidae). Bull. Ent. Res. 83 (1993) 59-66
  • [13] B. Persson, Influence of weather and nocturnal illumination on the activity and abundance of population of Noctuids (Lepidoptera) in South Coastal Queensland. Bull. Ent. Res. 66 (1976) 33-63
  • [14] S.M. Vaishampayan, R. Verma, Effect of moon phase and lunar periodicity on the light trap catches of gram pod borer moths Heliothis armigera (Hubner). Insect interrelations in forest and agro ecosystems (ed. By San-Sharma, P. K., Kulshrestha, S. K., Saagal, S. K. Debra Dun (India) Jugal Kishora, (1983) 123-130.
  • [15] C.B. Williams, The influence of moonlight on the activity of certain nocturnal insects, particularly of the family of Noctuidae as indicated by light- trap. Phil. Trans. Roy. Soc. London. B, 226: 357-389
  • [16] S.J. Nemec, Effects of lunar phases on light-trap collections and populations of bollworm moth. J. Econ. Ent. 64 (1971) 860-864.
  • [17] R.R. Baker, Y. Sadovy, The distance and nature of the light-trap response of moths. Nature, 276 (1978) 818-821
  • [18] R.R. Baker, Celestial and light-trap orientation of moths. Antenna, 3 (1979) 44-45
  • [19] S. Sotthibandhu, R.R. Baker, Celestial orientation by the large yellow moth, Noctua pronuba L. Anim. Behav. 27 (1979) 786-800
  • [20] J. Bowden, G.M. Morris, The influence of moonlight on catches of insects in light-trap in Africa. Part III. The effective radius of a mercury- vapour light-trap and analysis of catches using effective radius. Bull. Ent. Res. 65 (1975) 303-348
  • [21] C. Dufay, Contribution a l'Étude du phototropisme des Lépidopteres noctuides. Annales des Sciences Naturelles, Zoologie, 12 (6) (1964) 281-406
  • [22] J. Bowden, An analysis of factors affecting catches of insects in light-traps. Bull. Ent. Res. 72 (1982) 535-556
  • [23] L. Nowinszky, S. Szabó, Gy. Tóth, I. Ekk, M. Kiss, The effect of the moon phases and of the intensity of polarized moonlight on the light-trap catches. Z. Ang. Ent. 88 (1979) 337-353
  • [24] L. Nowinszky, [ed.] Light Trapping and the Moon. Savaria University Press, (2008) 170.
  • [25] Ch. Truxa, K. Fiedler, Attraction to light – from how far do moths (Lepidoptera) return to weak artificial sources of light? Eur. J. Entomol. 109 (2012) 77–84
  • [26] A. Ambrus, Gy. Csóka, Studien über das Schwärmen und die Dichte- Abschätzung des Forstspanners, Operophthera brumata L. (Lep., Geometridae) mit Hilfe von Markierungen und Pheromonfallen in Ungarn. Anz. Schädlingskde, Pflanzenschutz, Umweltschutz, 65 (1992) 88-92
  • [27] L. Nowinszky, J. Puskás, Possible reasons for reduced light trap catches at a full moon: Shorter collecting distance or reduced flight activity. Advances in Bioresearch, 1(1) (2010) 205-220
  • [28] L. Nowinszky, M. Kiss, J. Puskás, Light-trap Catch of Microlepidoptera spec. indet. in Connection with the Gravitational Potential of Sun and Moon. Molecular Entomology, 9(3) (2018) 29-34
  • [29] B. Lyot, (1929). Recherches sur la polarisation pe la lumiere des planetes et de quelques substances terrestres. Annal. Observat. de Paris / Meudon, 8 (1929) 1-161
  • [30] A. Dollfus, (1961) Polarization studies of planets. In: The Solar System. Vol. 3, Chapter 9. Ed. by G. P. Kuiper; B. M. Middlehurst, Univ. of Chicago Press.
  • [31] S.F. Pellicori, Polarizing properties of pulverized materials with special reference to the lunar surface. Applied. Optics. 10(2) (1971) 270-285
  • [32] M. Dacke, D.E. Nilsson, C.H. Scholtz., M. Byrne, E.J. Warrant, Insect orientation to polarized moonlight. Nature, 424 (2003) 33
  • [33] C.C.M. Kyba, T. Ruhtz, J. Fischer, F. Hölker, Lunar skylight polarization signal polluted by urban lighting, J. Geophys. Res. (2011) 116: D24106, doi:10.1029/2011JD016698
  • [34] M. Dacke, Chapter 2 Polarized Light Orientation in Ball-Rolling Dung Beetles (in: Horváth, G. (ed.), Polarized Light and Polarization Vision in Animal Sciences, Springer Series in Vision Research 2, DOI: 10.1007/978-3-642-54718-8_2
  • [35] A. Barta, A. Farkas, D. Száz, Á. Egri, P. Barta, J. Kovács, B. Csák, I. Jankovics, G. Szabó G., G. Horváth. Polarization transition between sunlit and moonlit skies with possible implications for animal orientation and Viking navigation: anomalous celestial twilight polarization at partial moon. Appl. Opt. 53 (2014) 5193–5204
  • [36] J. Járfás, Forecasting of harmful moths by light-traps (in Hungarian). PhD Thesis. Kecskemét. (1979) 127.
  • [37] J. Meeus J., Astronomical Algorithms, 2nd ed. (Willmann-Bell, 1998).
  • [38] M.V. Berry, M.R. Dennis, R.L.Jr. Lee, “Polarization singularities in the clear sky” New J. Phys. 6 (2004) 162.
  • [39] L. Nowinszky, The Handbook of Light Trapping. Savaria University Press Szombathely (2003) 272.
  • [40] P. Odor, L. Iglói, An Introduction to the Sport’s Biometry. ÁISH Tudományos Tanácsának Kiadása, Budapest. (in Hungarian) (1987) 267.
  • [41] L. Nowinszky, M. Kiss, J. Puskás, A. Barta, Light Trapping of Caught Macro-lepidoptera Individuals and Species in Connection with Night Sky Polarization and Gravitational Potential of Sun. Mod. Appl. Bioequiv. Availab. 2(4) (2017) MABB.MS. ID.5555941
  • [42] L. Nowinszky, Z. Mészáros, J. Puskás, The beginning and end of the insects’ flight towards the light according to different environmental lighting. Applied Ecology and Environmental Research 6(2) (2008) 137-145

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-4f1f5c79-e6fe-4250-badf-50a04b101947
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.