PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 1 | 4 | 221-230
Article title

Zwyrodnienie plamki związane z wiekiem. Część I: epidemiologia, patogeneza, aspekty genetyczne i profilaktyka

Authors
Content
Title variants
EN
Macular degeneration associated with age Part I: epidemiology, pathogenesis, genetics aspects and prevention
Languages of publication
PL
Abstracts
EN
Macular degeneration associated with age is a leading cause of central vision loss. The disease process involves macular region of the retina and in the course of disease progression leads to a significant deterioration of visual acuity and thus and quality of life. The patient loses the opportunity to practice their profession yet, reading, watching TV or driving. This condition is significantly associated with aging and degeneration of tissues usually occurs after age of 50 years. Only a few years ago, introduced for the treatment of pharmaceuticals and other therapeutic approaches which substantially improved the prognosis for the behavior of the useful field of vision. The breakthrough discovery was clinically confirmed inhibition endothelial growth factor, causing neovascularization, which resulted in the lack of growth of abnormal vessels and as a result protect not only against the decrease in visual acuity, but even this function improved. It was a real revolution in ophthalmology, which gave patients hope for a full recovery. Is the cure possible? Is it only for a short time the disease does not progress? Spend that knowledge about the genetic basis, pathophysiology, possible use of new drugs and the use of all methods of treatment including surgery used in the appropriate stage of development of the disease we are getting closer to achieving therapeutic success. But this success is to stop disease progression and not a complete cure of the full recovery of visual acuity.
PL
Zwyrodnienie plamki związane z wiekiem jest najczęstszą przyczyną utraty widzenia centralnego. Proces chorobowy obejmuje region plamkowy siatkówki i prowadzi do znacznego pogorszenia ostrości wzroku, a co za tym idzie – również jakości życia. Chory traci możliwość wykonywania dotychczasowego zawodu, czytania, oglądania telewizji czy prowadzenia samochodu. Schorzenie to jest wyraźnie powiązane z procesami starzenia się i degeneracji tkanek, zazwyczaj pojawia się po 50. r.ż. Dopiero kilka lat temu wprowadzono środki farmakologiczne i inne metody terapeutyczne, które zdecydowanie poprawiły szansę na zachowanie użytecznej ostrości wzroku. Przełomowym odkryciem było klinicznie potwierdzone zahamowanie endotelialnego czynnika wzrostu, powodującego neowaskularyzację, co skutkowało brakiem wzrostu nieprawidłowych naczyń i w efekcie chroniło nie tylko przed spadkiem ostrości wzroku, ale nawet tę funkcję poprawiało. To była prawdziwa rewolucja w okulistyce, która dała pacjentom nadzieję na całkowite wyleczenie. Ale czy leczenie może przywrócić pełną ostrość wzroku? Czy tylko na krótko powstrzymuje ono postęp schorzenia? Wydaje się, że wiedza na temat genetycznego podłoża, patofizjologii, możliwości podawania nowych leków i wykorzystanie wszystkich metod terapeutycznych, łącznie z chirurgią, zastosowane na odpowiednim etapie rozwoju choroby coraz bardziej zbliżają nas do osiągnięcia sukcesu terapeutycznego. Ale sukces ten to powstrzymanie postępu choroby, a nie całkowite wyleczenie z odzyskaniem pełnej ostrości wzroku.
Discipline
Publisher
Journal
Year
Volume
1
Issue
4
Pages
221-230
Physical description
References
  • 1. Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2002. Bull World Health Organ 2004; 82(11): 844-851.
  • 2. Friedman DS, O’Colmain BJ, Muñoz B, et al.; Eye Diseases Prevalence Research Group: Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004; 122(4): 564-572.
  • 3. Augood CA, Vingerling JR, de Jong PT, et al. Prevalence of age-related maculopathy in older Europeans: the European Eye Study (EUREYE). Arch Ophthalmol 2006; 124(4): 529-535.
  • 4. Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res 2004; 78(3): 715-721.
  • 5. Rizzolo LJ. Development and role of tight junctions in the retinal pigment epithelium. Int Rev Cytol 2007; 258: 195-234.
  • 6. de Jong PT. Age-related macular degeneration. N Engl J Med 2006; 355(14): 1474-1485.
  • 7. Ramrattan RS, van der Schaft TL, Mooy CM, et al. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 1994; 35(6): 2857-2864.
  • 8. Starita C, Hussain AA, Pagliarini S, et al. Hydrodynamics of ageing Bruch’s membrane: implications for macular disease. Exp Eye Res 1996; 62(5): 565-572.
  • 9. Gilmore AP. Cell Death Differ 2005; 12(suppl. 2): 1473-1477.
  • 10. Guymer RH, Bird AC, Hageman GS. Cytoarchitecture of choroidal capillary endothelial cells. Invest Ophthalmol Vis Sci 2004; 45(6): 1660-1666.
  • 11. Feeney L. Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 1978; 17(7): 583-600.
  • 12. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 2005; 80(5): 595-606.
  • 13. Coleman HR, Chan CC, Ferris FL, et al. Age-related macular degeneration. Lancet 2008; 372(9652): 1835-1845.
  • 14. Ding X, Patel M, Chan CC. Molecular pathology of age-related macular degeneration. Prog Retin Eye Res 2009; 28(1): 1-18.
  • 15. Wang J, Ohno-Matsui K, Yoshida T, et al. Amyloid-beta up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: Another mechanism of complement activation in age-related macular degeneration. J Cell Physiol 2009; 220(1): 119-128.
  • 16. Klein R, Klein BE, Jensen SC, et al. The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1997; 104(1): 7-21.
  • 17. McLeod DS, Taomoto M, Otsuji T, et al. Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 2002; 43(6): 1986-1993.
  • 18. Grossniklaus HE, Green WR. Choroidal neovascularization. Am J Ophthalmol 2004; 137(3): 496-503.
  • 19. Penfold PL, Madigan MC, Gillies MC, et al. Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res 2001; 20 (3): 385-414.
  • 20. Chen J, Connor KM, Smith LE. Overstaying their welcome: defective CX3CR1 microglia eyed in macular degeneration. J Clin Invest 2007; 117(10): 2758-2762.
  • 21. Kim SY, Sadda S, Pearlman J, et al. Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina 2002; 22(4): 471-477.
  • 22. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308(5720): 385-389.
  • 23. Yang Z, Camp NJ, Sun H, et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 2006; 314(5801): 992-993.
  • 24. Allikmets R, Dean M. Bringing age-related macular degeneration into focus. Nat Genet 2008; 40(7): 820-821.
  • 25. Seddon JM, Francis PJ, George S, et al. Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. JAMA 2007; 297(16): 1793-800.
  • 26. Luo L, Harmon J, Yang X, et al. Familial aggregation of age-related macular degeneration in the Utah population. Vision Res 2008; 48(3): 494-500.
  • 27. Fisher SA, Abecasis GR, Yashar BM et al. Meta-analysis of genome scans of age-related macular degeneration. Hum Mol Genet 2005; 14(15): 2257-2264.
  • 28. Donoso LA, Kim D, Frost A, et al. The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2006; 51(2): 137-152.
  • 29. Tuo J, Bojanowski CM, Chan CC. Genetic factors of age-related macular degeneration. Prog Retin Eye Res 2004; 23(2): 229-249.
  • 30. Johnson PT, Betts KE, Radeke MJ, et al. Individuals homozygous for the age-related macular degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. Proc Natl Acad Sci USA 2006; 103(46): 17456-17461.
  • 31. Tuo J, Ning B, Bojanowski CM, et al. Synergic effect of polymorphisms in ERCC6 5’ flanking region and complement factor H on age-related macular degeneration predisposition. Proc Natl Acad Sci USA 2006; 103(24): 9256-9261.
  • 32. Chen LJ, Liu DT, Tam PO, et al. Association of complement factor H polymorphisms with exudative age-related macular degeneration. Mol Vis 2006; 12: 1536-1542.
  • 33. Zareparsi S, Branham KE, Li M. Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 2005; 77(1): 149-153.
  • 34. Thakkinstian A, Han P, McEvoy M, et al. Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration. Hum Mol Genet 2006; 15(18): 2784-2790.
  • 35. Hageman GS, Hancox LS, Taiber AJ, et al.; AMD Clinical Study Group. Extended haplotypes in the complement factor H (CFH) and CFH-related (CFHR) family of genes protect against age-related macular degeneration: characterization, ethnic distribution and evolutionary implications. Ann Med 2006; 38(8): 592-604.
  • 36. Gold B, Merriam JE, Zernant J, et al.; AMD Genetics Clinical Study Group. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 2006; 38(4): 458-462.
  • 37. Nozaki M, Raisler BJ, Sakurai E, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA 2006; 103(7): 2328-2333.
  • 38. Despriet DD, van Duijn CM, Oostra BA. Complement component C3 and risk of age-related macular degeneration. Ophthalmology 2009; 116(3): 474-480.e2.
  • 39. Majewski J, Schultz DW, Weleber RG, et al. Age-related macular degeneration – a genome scan in extended families. Am J Hum Genet 2003; 73(3): 540-550.
  • 40. Weeks DE, Conley YP, Tsai HJ, et al. Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 2004; 75(2): 174-189.
  • 41. Jakobsdottir J, Conley YP, Weeks DE, et al. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet 2005; 77(3): 389-407.
  • 42. Allikmets R, Dean M. Bringing age-related macular degeneration into focus. Nat Genet 2008; 40(7): 820-821.
  • 43. Wang JJ, Ross RJ, Tuo J, et al. The LOC387715 polymorphism, inflammatory markers, smoking, and age-related macular degeneration. A population-based case-control study. Ophthalmology 2008; 115(4): 693-699.
  • 44. Oka C, Tsujimoto R, Kajikawa M, et al. HtrA1 serine protease inhibits signaling mediated by TGF β family proteins. Development 2004; 131(5): 1041-1053.
  • 45. Launay S, Maubert E, Lebeurrier N, et al. HtrA1-dependent proteolysis of TGF-beta controls both neuronal maturation and developmental survival. Cell Death Differ 2008; 15(9): 1408-1416.
  • 46. Tam PO, Ng TK, Liu DT, et al. HTRA1 variants in exudative age-related macular degeneration and interactions with smoking and CFH. Invest Ophthalmol Vis Sci 2008; 49(6): 2357-2365.
  • 47. Deangelis MM, Ji F, Adams S, et al. Alleles in the HtrA serine peptidase 1 gene alter the risk of neovascular age-related macular degeneration. Ophthalmology 2008; 115(7): 1209-1215.e7.
  • 48. Fritsche LG, Loenhardt T, Janssen A, et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 2008; 40(7): 892-896.
  • 49. Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2006; 33(22): 7138-7150.
  • 50. Khabar KS. The AU-rich transcriptome: more than interferons and cytokines, and its role in disease. J Interferon Cytokine Res 2005; 25(1): 1-10.
  • 51. Ding X, Patel M, Chan CC. Molecular pathology of age-related macular degeneration. Prog Retin Eye Res 2009; 28(1): 1-18.
  • 52. Schmidt S, Klaver C, Saunders A. A pooled case-control study of the apolipoprotein E (APOE) gene in age-related maculopathy. Ophthalmic Genet 2002; 23(4): 209-223.
  • 53. Baird PN, Richardson AJ, Robman LD, et al. Apolipoprotein (APOE) gene is associated with progression of age-related macular degeneration (AMD). Hum Mutat 2006; 27(4): 337-342.
  • 54. Zareparsi S, Reddick AC, Branham KE, et al. Association of apolipoprotein E alleles with susceptibility to age-related macular degeneration in a large cohort from a single center. Invest Ophthalmol Vis Sci 2004; 45(5): 1306-1310.
  • 55. Klein ML, Francis PJ, Rosner B, et al. CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology 2008; 115(6): 1019-1025.
  • 56. Brantley MA Jr., Fang AM, King JM. Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to intravitreal bevacizumab. Ophthalmology 2007; 114(12): 2168-2173.
  • 57. Goverdhan SV, Hannan S, Newsom RB. An analysis of the CFH Y402H genotype in AMD patients and controls from the UK, and response to PDT treatment. Eye (London) 2008; 22(6): 849-854.
  • 58. Brantley MA Jr., Edelstein SL, King JM, et al. Association of complement factor H and LOC387715 genotypes with response of exudative age-related macular degeneration to photodynamic therapy. Eye (London) 2009; 23(3): 626-631.
  • 59. Hogg RE, Chakravarthy U. Visual function and dysfunction in early and late age-related maculopathy. Prog Retin Eye Res 2006; 25(3): 249-276.
  • 60. de Jong PT. Age-related macular degeneration. N Engl J Med 2006; 355(14): 1474-1485.
  • 61. Andreoli CM, Miller JW. Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 2007; 18(6): 502-508.
  • 62. Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 2007; 102(4): 840-847.
  • 63. Seddon JM, Francis PJ, George S, et al. Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. JAMA 2007; 297(16): 1793-1800.
  • 64. Grossniklaus HE, Green WR. Choroidal neovascularization. Am J Ophthalmol 2004; 137(3): 496-503.
  • 65. Yannuzzi LA, Freund KB, Takahashi BS. Review of retinal angiomatous proliferation or type 3 neovascularization. Retina 2008; 28(3): 375-384.
  • 66. Wang J, Ohno-Matsui K, Yoshida T, et al. Amyloid-beta up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: Another mechanism of complement activation in age-related macular degeneration. J Cell Physiol 2009; 220(1): 119-128.
  • 67. Oh H, Takagi H, Takagi C, et al. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1999; 40(9): 1891-1898.
  • 68. Steen B, Sejersen S, Berglin L, et al. Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest Ophthalmol Vis Sci 1998; 39(11): 2194-2200.
  • 69. Amin R, Puklin JE, Frank RN. Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 1994; 35(8): 3178-3188.
  • 70. Hangai M, Murata T, Miyawaki N, et al. Angiopoietin-1 upregulation by vascular endothelial growth factor in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2001; 42(7): 1617-1625.
  • 71. Congdon N, O’Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 2004; 122(4): 477-485.
  • 72. VanNewkirk MR, Nanjan MB, Wang JJ, et al. The prevalence of age-related maculopathy: the visual impairment project. Ophthalmology 2000; 107(8): 1593-1600.
  • 73. Smith W, Assink J, Klein R, et al. Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology 2001; 108(4): 697-704.
  • 74. Tomany SC, Wang JJ, van Leeuwen R, et al. Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. Ophthalmology 2004; 111(7): 1280-1287.
  • 75. The Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): design implications. AREDS Report No. 1. Control Clin Trials 1999; 20(6): 573-600.
  • 76. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS Report No. 8. Arch Ophthalmol 2001; 119(10): 1417-1436. Erratu in: 2008; 126(9): 1251.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-4ec5976b-9b5a-4272-add9-88daa27db90c
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.