Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2026 | 64 | 1-10

Article title

Exploring Anopheles gambiae Giles, 1902, (Family: Culicidae) Doublesex Gene Editing via CRISPR and Its Implications for CAR T-Cell Therapy and Vector Control in Nigeria

Content

Title variants

Languages of publication

EN

Abstracts

EN
Advances in CRISPR-based editing and chimeric antigen receptor (CAR) T-cell engineering have pushed modern biomedical research into practical, high-impact space. This study reports a workshop-based investigation that applied CRISPR guideRNA design and promoter analysis methods routinely used in CAR T-cell design to the doublesex (dsx) gene of Anopheles gambiae. Using Ensembl and NCBI resources, multiple sequence alignment across Anopheles species and motif searches in the upstream region of dsx were performed to identify conserved target windows and a putative upstream regulatory region. The intron – exon boundary targeted by contemporary gene-drive strategies (intron4–exon5) proved highly conserved across sampled species, supporting its suitability for CRISPR targeting. A candidate promoter motif architecture, including a predicted TATA box and initiator element within a conserved upstream window, is presented as a putative regulatory locus for further experimental validation. The paper situates these findings in two applied contexts: precision promoter selection for CAR expression in therapeutic cell engineering, and CRISPR-driven mosquito population control with potential to reduce malaria burden in Nigeria. Limitations and ethical considerations are discussed with emphasis on the need for local, experimental follow-up.

Discipline

Year

Volume

64

Pages

1-10

Physical description

Contributors

  • Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
  • Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
  • Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
  • Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
  • Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin Kwara State, Nigeria
author
  • Department of Molecular Biophysics, Indian Institute of Science, Bengaluru, Karnataka, India

References

  • [1] Adolfi, A., Gantz, V. M., Jasinskiene, N., Lee, H. F., Hwang, K., Terradas, G., & James, A. A. (2020). Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nature Communications, 11(1), 5553. https://doi.org/10.1038/s41467-020-19426-0
  • [2] Anzalone, A. V., Koblan, L. W., & Liu, D. R. (2020). Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7), 824-844. https://doi.org/10.1038/s41587-020-0561-9
  • [3] Bottino-Rojas V, James AA. (2022). Use of Insect Promoters in Genetic Engineering to Control Mosquito-Borne Diseases. Biomolecules. 13(1), 16. doi: 10.3390/biom13010016
  • [4] Carballar-Lejarazú, R., Ogaugwu, C., Tushar, T., Kelsey, A., Pham, T. B., Murphy, J., & James, A. A. (2020). Next-generation gene drive for population modification of malaria vectors. Proceedings of the National Academy of Sciences, 117(37), 22805-22814. https://doi.org/10.1073/pnas.2010214117
  • [5] Coluzzi M, Sabatini A, Petrarca V, et al. (1979). Chromosomal differentiation and adaptations to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 73(5), 483-497. https://doi.org/10.1016/0035-9203(79)90036-1
  • [6] Diabate A, Dao A, Yaro A, et al. (2009). Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc R Soc B. 276, 4215-4222. https://doi.org/10.1098/rspb.2009.1167
  • [7] Fontaine M, Pease J, Steele A, et al. (2015). Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347(6217), 1258524. https://doi.org/10.1126/science.1258524
  • [8] Hancock P.A., Wiebe A, Gleave K.A,, Bhatt S, Cameron E, Trett A, Weetman D, Smith D.L., Hemingway J, Coleman M, Gething P.W., Moyes C.L (2018). Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proceedings of the National Academy of Sciences of the United States of America; 115(23), 5938-5943. https://doi.org/10.1073/pnas.1801826115
  • [9] Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR–Cas9 for genome engineering. Cell, 157(6), 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010
  • [10] Jawień, P.; Pfitzner, W.P.; Schaffner, F.; Kiewra, D. (2024). Mosquitoes (Diptera: Culicidae) of Poland: An Update of Species Diversity and Current Challenges. Insects 15(5), 353. https://doi.org/10.3390/insects15050353
  • [11] Kientega, M., Morianou, I., Traoré, N., Kranjc, N., Burt, A., Diabaté, A., et al. (2024). Genomic analyses revealed low genetic variation in the intron-exon boundary of the doublesex gene within the natural populations of Anopheles gambiae sensu lato in Burkina faso. BMC Genomics 25, 1207. https://doi.org/10.1186/s12864-024-11127-y
  • [12] Kyrou, K., Hammond, A. M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A. K., Nolan, T., & Crisanti, A. (2018). A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology, 36(11), 1062-1066. https://doi.org/10.1038/nbt.4245
  • [13] Miles A, Harding N, Bottà G, et al. (2017). Genetic diversity of the African malaria vector Anopheles gambiae. Nature 552: 96-100. https://doi.org/10.1038/nature24995
  • [14] Mitra, A., et al. (2023). From bench to bedside: the history and progress of CAR T therapies. Frontiers in Immunology 14: 1188049. https://doi.org/10.3389/fimmu.2023.1188049
  • [15] Neeser, A., et al. (2023). Engineering enhanced CAR T-cell therapy for solid tumors: bioengineering strategies and promoter considerations. ESMO Journals, 19, 100385. https://doi.org/10.1016/j.iotech.2023.100385.
  • [16] Olabimi, I.O., Ileke, K.D., Adu, B.W., Arotolu, T. E. (2021). Potential distribution of the primary malaria vector Anopheles gambiae Giles [Diptera: Culicidae] in Southwest Nigeria under current and future climatic conditions. Journal of Basic and Applied Zoology; 82(63). https://doi.org/10.1186/s41936-021-00261-8
  • [17] Shukla, J.N., Nagaraju, J. (2010). Doublesex: a conserved downstream gene controlled by diverse upstream regulators. Journal of Genetics, 89, 341-356. https://doi.org/10.1007/s12041-010-0046-6
  • [18] Simoni, A., Hammond, A., Beaghton, A. K., Galizi, R., Taxiarchi, C., Kyrou, K., Meacci, D., Gribble, M., Morselli, G., Burt, A., Nolan, T., Crisanti, A. (2020). A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nature Biotechnology, 38(9), 1054-1060. https://doi.org/10.1038/s41587-020-0508-1
  • [19] World Health Organization. (2023). World malaria report 2023. https://www.who.int/publications/i/item/9789240086173
  • [20] Zhang, C., et al. (2017). Engineering CAR-T cells. Biomarker Research, 5, 22. https://doi.org/10.1186/s40364-017-0102-y

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-4e108b9e-aa43-4992-8b7d-c0170d993f5d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.