PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 66 | 6 | 45–56
Article title

Etiopatogeneza kleszczowego zapalenia mózgu (KZM)

Content
Title variants
EN
Etiopathogenesis of tick-borne encephalitis (TBE)
Languages of publication
PL
Abstracts
EN
The tick-borne encephalitis virus (TBEV) is an etiological agent of tick-borne encephalitis (TBE), a serious seasonal disease of the central nervous system transmitted by ticks. Within TBEV, there are three subtypes, and their geographic scopes are closely related to the tick species (mostly Ixodes ricinus and I. persulcatus), the main vector and reservoir. The distribution range of ticks, and hence TBEV, has broadened in recent years and new endemic foci of the virus are emerging. The life cycle of TBEV in the environment is infl uenced by the interactions between the virus, vector and reservoir. The population density of ticks and their hosts in a given terrain determines the circulation of the virus in this area. The course of infections caused by certain TBEV subtypes shows substantial diff erences in the clinical picture. Typical TBEV infection has a biphasic course. There are several factors aff ecting the course of the infection. Type I interferons play a major role in controlling viral replication. Dendritic cells, the important producers of interferon, are the primary target for TBEV in the early phase of the infection. Furthermore, TBEV is a neurotrophic virus causing the development of infl ammation and destruction of neurons and immunopathological eff ects. It is believed that the immune system, especially cytotoxic T cells, plays a key role in the destruction of neurons, and to a lesser extent, the direct lysis of cells infected with TBEV. The immune response directed at the elimination of TBEV infection paradoxically contributes to the exacerbation of the disease. So far, active vaccination is the only eff ective method of TBE prevention.
PL
Wirus kleszczowego zapalenia mózgu (Tick-borne encephalitis virus – TBEV) stanowi czynnik etiologiczny groźnego sezonowego schorzenia ośrodkowego układu nerwowego przenoszonego przez kleszcze, zwanego kleszczowym zapaleniem mózgu (KZM). W obrębie TBEV wyróżnia się trzy podtypy, a zasięg geografi czny każdego z nich jest ściśle związany z gatunkiem kleszcza (najczęściej Ixodes ricinus i I. persulcatus) stanowiącego ich główny wektor i rezerwuar. W ostatnich latach dochodzi do poszerzania się zasięgu występowania kleszczy, a wraz z nimi TBEV, jak też powstawania nowych ognisk endemicznych wirusa. Cykl rozwojowy TBEV w środowisku uwarunkowany jest interakcją między wirusem, wektorem – kleszczem, i rezerwuarem – żywicielem kleszcza. Zagęszczenie populacji kleszczy oraz ich gospodarzy na danym terenie determinują krążenie wirusa na tym obszarze. Przebieg zakażenia poszczególnymi podtypami wirusa wykazuje znaczne różnice w obrazie klinicznym. Typowe zakażenie TBEV ma przebieg dwufazowy. Istnieje wiele czynników wpływających na przebieg infekcji związanych z organizmami kleszczy, ich żywicieli oraz podtypami wirusa. Główną rolę w kontroli replikacji wirusa odgrywają interferony typu I. Komórki dendrytyczne, ważni producenci interferonu, stanowią podstawowy cel dla TBEV we wczesnej fazie infekcji. Ponadto TBEV jest wirusem neurotropowym, prowadząc do rozwoju stanu zapalnego i niszczenia komórek nerwowych. Co więcej, zakażenie TBEV ma charakter immunopatologiczny. Przypuszcza się, że kluczową rolę w niszczeniu neuronów odgrywa działanie układu odpornościowego, zwłaszcza limfocytów T cytotoksycznych (Tc CD8+), zaś w mniejszym stopniu bezpośrednia liza komórek zakażonych TBEV. Odpowiedź immunologiczna skierowana na eliminację zakażenia TBEV przyczynia się więc paradoksalnie do zaostrzenia choroby. Jak dotąd, jedyną skuteczną metodą walki z wirusem jest stosowanie szczepień ochronnych.
Discipline
Year
Volume
66
Issue
6
Pages
45–56
Physical description
References
  • 1. Silber L.A., Soloviev V.D. Far Eastern tickborne spring-summer (spring) encephalitis. Am. Rev. Soviet. Med. 1946; 5: 1–80.
  • 2. Blaškovič D. The public health importance of tick-borne encephalitis in Europe. Bull. Wid. Hlth. Org. 1967; 36(1): 5–13.
  • 3. Tonteri E., Jääskeläinen A.E., Tikkakoski T. i wsp. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008 –2009. Emerg. Infect. Dis. 2011; 17(1): 72–75.
  • 4. Grard G., Moureau G., Charrel R.N. i wsp. Genetic characterization of tickborne flaviviruses: New insights into evolution, pathogenic determinants and taxonomy. Virology 2007; 361: 80–92.
  • 5. Banzhoff A., Bröker M., Zent M. Protection against tick-borne encephalitis (TBE) for people living in and travelling to TBE- -endemic areas. Travel Med. Infect. Dis. 2008; 6: 331–341.
  • 6. Mansfi eld K.L., Johnson N., Phipps L.P., Stephenson J.R., Fooks A.R., Solomon T. Tick-borne encephalitis virus – a review of an emerging zoonosis. J. Gen. Virol. 2009; 90: 1781–1794.
  • 7. Olsén B., Jaenson T.G.T., Bergström S. Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds. Appl. Environ. Microbiol. 1995; 61: 3082–3087.
  • 8. Jääskeläinen A.E., Tikkakoski T., Uzcátequi N.Y., Alekseev A.N., Vaheri A., Vapalahti O. Siberian subtype tickborne encephalitis virus, Finland. Emerg. Infect. Dis. 2006; 12: 1568–1571.
  • 9. Heinz F.X. Molecular aspects of TBE virus research. Vaccine 2003; 21(1): 3–10.
  • 10. Kunze U., ISW TBE. Tick-borne encephalitis: from epidemiology to vaccination recommendations in 2007. New issues – best practices. Wien. Med. Wochenschr. 2007; 157(9–10): 228–232.
  • 11. Růžek D., Dobler G., Mantke O.D. Tickborne encephalitis: Pathogenesis and clinical implications. Travel Med. Infect. Dis. 2010; 8: 223–232.
  • 12. Süss J. Epidemiology and ecology of TBE relevant to the production of eff ective vaccines. Vaccine 2003; 21(1): 19–35.
  • 13. Petri E., Gniel D., Zent O. Tick-borne encephalitis (TBE) trends in epidemiology and current and future management. Travel Med. Infect. Dis. 2010; 8: 233–245.
  • 14. Kim S.Y., Yun S.M., Han M.G. i wsp. Isolation of tick-borne encephalitis viruses from wild rodents, South Korea. Vector Borne Zoonotic Dis. 2008; 8: 7–13.
  • 15. Yun S.M., Kim S., Han M.G. i wsp. Analysis of the envelope (E) protein gene of tick-borne encephalitis viruses isolated in South Korea. Vector Borne Zoonotic Dis. 2009; 9: 287–293.
  • 16. Karan L.S., Kolyasnikova N.M., Fedorova M.V., Pogodina V.V., Platonov A.E. Epidemiology and evolution of TBE in Russia 1939–2009. Vienna, Conference report of the 9th meeting of the International Scientifi c Working Group of Tick-borne Encephalitis (ISW TBE) (abstract) 2010.
  • 17. Lu Z., Bröker M., Liang G. Tick-borne encephalitis in mainland China. Vector Borne Zoonotic Dis. 2008; 8: 713–720.
  • 18. Takashima I., Hayasaka D., Goto A., Kariwa H., Mizutani T. Epidemiology of tick-borne encephalitis (TBE) and phylogenetic analysis of TBE viruses in Japan and Far Eastern Russia. Jpn. J. Infect. Dis. 2001; 54: 1–11.
  • 19. Süss J., Klaus C., Gerstengarbe F.W., Werner P.C. What makes ticks tick? Climate change, ticks and tick-borne diseases. J. Travel Med. 2008; 15: 39–45.
  • 20. Holzmann H., Aberle S.W., Stiasny K. i wsp. Tick-borne encephalitis from eating goat cheese in a mountain region of Austria. Emerg. Infect. Dis. 2009; 15: 1671–1673.
  • 21. Eisen L. Climate change and tick-borne diseases: A research fi eld in need of long- -term empirical fi eld studies. Int. J. Med. Microbiol. 2008; 298(1): 12–18.
  • 22. Skarpaas T., Golovljova I., Vene S. i wsp. Tick-borne encephalitis virus, Norway and Denmark. Emerg. Infect. Dis. 2006; 12: 1136–1138.
  • 23. Lindquist L., Vapalahti O. Tick borne encephalitis. Lancet 2008; 371: 1861–1871.
  • 24. Jääskeläinen A., Tonteri E., Sironen T., Vaheri A., Vapalahti O. Ixodes persulcatus carries TBEV-Eur in Simo, Finnish Lapland. Vienna, Conference report of the 12th meeting of the International Scientifi c Working Group on Tick-Borne Encephalitis (ISW-TBE). 2010.
  • 25. Kupča A.M., Essbauer S., Zoeller G. i wsp. Isolation and molecular characterization of a tick-borne encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick Borne Dis. 2010; 1: 44–51.
  • 26. Demiaszkiewicz W. Wiosenno-letnie kleszczowe zapalenie mózgu w Puszczy Białowieskiej. Pol. Tyg. Lek. 1952; 7: 799–801.
  • 27. Szajna J. Badania nad zapaleniem mózgu kleszczowym. III. Obraz kliniczny kleszczowego zapalenia mózgu. N. Prz. Epidemiol. 1954; 8(3): 219–223.
  • 28. Gut W., Prokopowicz D. Półwiecze kleszczowego zapalenia mózgu w Polsce. Prz. Epidemiol. 2002; 56: 129–135.
  • 29. www.pzh.gov.pl
  • 30. Gray J.S., Dautel H., Estrada-Peńa A., Kahl O., Lindgren E. Eff ects of Climate Change on Ticks and Tick-Borne Diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009: 593232,12 pp.
  • 31. Korenberg E.I. Recent epidemiology of tick-borne encephalitis: An eff ect of climate change? Adv. Virus. Res. 2009; 74: 123–144.
  • 32. Randolph S.E. Tick-borne encephalitis incidence in Central and Eastern Europe: consequences of political transition. Microbes Infect. 2008; 10: 209–216.
  • 33. Süss J. Tick-borne encephalitis 2010: Epidemiology, risk areas, and virus strains in Europe and Asia-An overview. Ticks Tick Borne Dis. 2011; 1: 1–14.
  • 34. Baxter A.G. Tick-Borne Encephalitis (TBE, FSME). Vienna, Austria 2008.
  • 35. Gray J.S. The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev. Med. Vet. Entomol. 1991; 79: 323–333.
  • 36. Charrel R.N., Attoui H., Butenko A.M. i wsp. Tick-borne virus diseases of human interest in Europe. Clin. Microbiol. Infect. 2004; 10: 1040–1055.
  • 37. Bakhvalova V.N., Dobrotvorsky A.K., Panov V.V., Matveeva V.A., Tkachev S.E., Morozova O.V. Natural tick-borne encephalitis virus infection among wild small mammals in the south-eastern part of Western Siberia, Russia. Vector Borne Zoonotic Dis. 2006; 6: 32–41.
  • 38. Blaškovič D. Outbreak of tick-borne encephalitis in Rožňava natural focus. SAV, Bratislava 1954.
  • 39. Kondrusik M., Hermanowska-Szpakowicz T. Kleszczowe zapalenie mózgu – aspekty patogenetyczne, kliniczne oraz powikłania. Neurol. Neurochir. Pol. 2004; 38, 1(1): 67–70.
  • 40. Avšič-Zupanc T., Poljak M., Maticic M. Laboratory acquired tick-borne meningoencephalitis: characterization of virus strains. Clin. Diagn. Virol. 1995; 4: 51–59.
  • 41. Bogovic P., Lotric-Furlan S., Strle F. What tick-borne encephalitis may look like: Clinical signs and symptoms. Travel Med. Infect. Dis. 2010; 8: 246–250.
  • 42. Dörrbecker B., Dobler G., Spiegel M., Hufer F.T. Tick-borne encephalitis virus and the immune response of the mammalian host. Travel Med. Infect. Dis. 2010; 8: 213–222.
  • 43. Haglund M., Günther G. Tick-borne encephalitis-pathogenesis, clinical course and long-term follow-up. Vaccine 2003; 21: 11–18.
  • 44. Robertson S.J., Mitzel D.N., Taylor T.T., Best S.M., Bloom M.E. Tick-borne fl aviviruses: dissecting host immune responses and virus countermeasures. Immunol Res. 2009; 43(1–3): 172–186.
  • 45. Lehrer A.T., Holbrook M.R. Tick-borne encephalitis vaccines. W: Vaccines for Biodefense and Emerging and Neglected Diseases. Red. A.D.T. Barrett, L.R. Stanberry, Elsevier Inc., London 2009; 714–735.
  • 46. Schultze D., Dollenmaier G., Rohner A., Guidi T., Cassinotti P. Benefi t of detecting tick-borne encephalitis viremia in the fi rst phase of illness. J. Clin. Virol. 2007; 38: 172–175.
  • 47. Kindberg E., Vene S., Mickiene A., Lundkvist A., Lindquist L., Svensson L. A functional Toll-like receptor 3 gene (TLR3) may be a risk factor for tick-borne encephalitis virus (TBEV) infection. J. Infect. Dis. 2011; 15; 203(4): 523–528.
  • 48. Carpi G., Bertolotti L., Rosati S., Rizzoli A. Prevalence and genetic variability of tick-borne encephalitis virus in hostseeking Ixodes ricinus in northern Italy. J. Gen. Virol. 2009; 90: 2877–2883.
  • 49. Donoso Mantke O., Schädler R., Niedrig M.A. A survey on cases of tick-borne encephalitis in European countries. Euro Surveill. 2008; 13: 18848.
  • 50. Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antivir. Res. 2003; 57: 129–146.
  • 51. Kindberg E., Mickiene A., Ax C. i wsp. 2008. A Deletion in the Chemokine Receptor 5 (CCR5) Gene Is Associated with Tickborne Encephalitis. J. Infect. Dis.; 197(2): 266–269.
  • 52. Överby A.K., Popov V.L., Niedrig M., Weber F. Tick-Borne Encephalitis Virus Delays Interferon Induction and Hides Its Double-Stranded RNA in Intracellular Membrane Vesicles. J. Virol. 2010; 84(17): 8470–8483.
  • 53. Naslednikova I.O., Ryazantseva N.V., Novitskii V.V. i wsp. Chronic tick-borne encephalitis virus antigenemia: possible pathogenesis pathways. Bull. Exp. Biol. Med. 2005; 139(4): 451–454.
  • 54. Gelpi E., Preusser M., Laggner U. i wsp. Infl ammatory response in human tick-borne encephalitis: analysis of post- -mortem brain tissue. J. Neurovirol. 2006; 12: 322–327.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-4d48eae9-6873-456e-9e2c-b6ef05c9442c
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.