Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

152-174

Physical description

Contributors

author

- Department of Physics, Imo State University, Owerri, Nigeria

author

- Department of Physics, Federal University of Technology, Owerri, Nigeria

author

- Department of Information and Communications Technology, Imo State University, Owerri, Nigeria

References

- [1] T.H. Glisson. Introduction to Circuit Analysis and Design, Springer, New York, 2011.
- [2] K. Ogata. Modern Control Engineering, Prentice Hall, New York, 2009.
- [3] Fatoorehchi, H., & Abolghasemi, H. (2016). Series solution of nonlinear differential equations by a novel extension of the Laplace transform method. International Journal of Computer Mathematics, 93(8), 1299-1319
- [4] Y. Khan, H. Vázquez-Leal, and N. Faraz. An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations. Appl. Math. Model. 37 (2013), 2702-2708, MR 3020448
- [5] S. Abbasbandy. Numerical solutions of the integral equations: Homotopy perturbation method and Adomian’s decomposition method. Appl. Math. Comput. 173 (2006), pp. 493-500, MR 2203403
- [6] S. Abbasbandy and M.T. Darvishi. A numerical solution of Burgers’ equation by modiﬁed Adomian method. Appl. Math. Comput. 163 (2005), 1265–1272, MR 2199478
- [7] Y. Çenesiz and A. Kurnaz. Adomian decomposition method by Gegenbauer and Jacobi polynomials. Int.J. Comput. Math. 88 (2011), 3666-3676, MR 2853262
- [8] A. Fakharian, M.T. Hamidi Beheshti, and A. Davari. Solving the Hamilton–Jacobi–Bellman equation using Adomian decomposition method, Int. J. Comput. Math. 87 (2010), 2769-2785, MR 2728206
- [9] H. Fatoorehchi and H. Abolghasemi. Adomian decomposition method to study mass transfer from a horizontal ﬂat plate subject to laminar ﬂuid ﬂow. Adv. Nat. Appl. Sci. 5 (2011) 26-33
- [10] H. Fatoorehchi and H. Abolghasemi. Investigation of nonlinear problems of heat conduction in tapered cooling ﬁns via symbolic programming. Appl. Appl. Math. 7 (2012) 717-734, MR 3006674
- [11] H. Fatoorehchi and H. Abolghasemi. A more realistic approach toward the differential equation governing the glass transition phenomenon. Intermetallics 32 (2012), 35-38
- [12] H. Fatoorehchi and H. Abolghasemi. Improving the differential transform method: A novel technique to obtain the differential transforms of nonlinearities by the Adomian polynomials. Appl. Math. Model. 37 (2013), 6008-6017, MR 3028446
- [13] H. Fatoorehchi and H. Abolghasemi. Approximating the minimum reﬂux ratio of multicomponent distillation columns based on the Adomian decomposition method. J. Taiwan Inst. Chem. E. 45 (2014), 880-886
- [14] H. Fatoorehchi and H. Abolghasemi. On computation of real eigenvalues of matrices via the Adomian decomposition. J. Egyptian Math. Soc. 22 (2014) 6-10, MR 3168583
- [15] H. Fatoorehchi and H. Abolghasemi. Finding all real roots of a polynomial by matrix algebra and the Adomian decomposition method. J. Egyptian Math. Soc. 22 (2014) 524–528, MR 3260803
- [16] H. Fatoorehchi, H. Abolghasemi, and R. Rach. An accurate explicit form of the Hankinson–Thomas– Phillips correlation for prediction of the natural gas compressibility factor. J. Petrol. Sci. Eng. 117 (2014), 46-53
- [17] B. Kundu and D. Bhanja. Performance and optimization analysis of a constructal T-shaped ﬁn subject to variable thermal conductivity and convective heat transfer coefﬁcient. Int. J. Heat Mass Transf. 53 (2010) 254-267
- [18] B. Kundu and S. Wongwises. A decomposition analysis on convecting–radiating rectangular plate ﬁns for variable thermal conductivity and heat transfer coefﬁcient. J. Franklin Inst. 349 (2012) 966-984, MR 2899321
- [19] E. Kutaﬁna, Taylor series for the Adomian decomposition method. Int. J. Comput. Math. 88 (2011), pp. 3677-3684, MR 2853263
- [20] A.M. Siddiqui, M. Hameed, B.M. Siddiqui, and Q.K. Ghori. Use of Adomian decomposition method in the study of parallel plate ﬂow of a third grade ﬂuid. Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 2388-2399, MR 2602723
- [21] J.-S. Duan. Recurrence triangle for Adomian polynomials. Appl. Math. Comput. 216 (2010) 1235-1241, MR 2607232
- [22] H. Fatoorehchi and H. Abolghasemi. On calculation of Adomian polynomials by MATLAB. J. Appl. Comput. Sci. Math. 5 (2011) 85-88

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-4d3990a3-46ca-44cf-a64b-9a7f5a5c62ad