Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 65 | 5-6 | 80–89

Article title

Charakterystyka komórek macierzystych występujących w łożysku ludzkim

Content

Title variants

EN
Characteristics of stem cells occurring in human placenta

Languages of publication

PL

Abstracts

PL
Potencjalnie, tak duży narząd jak łożysko ludzkie powinien być wydajnym źródłem komórek macierzystych. Pobieranie łożyska nie budzi kontrowersji. Izolacja komórek z poszczególnych warstw tego narządu jest procesem kilkuetapowym. Z części płodowej łożyska ludzkiego wyizolowano: komórki nabłonka owodni (hAEC), mezenchymalne komórki podścieliska owodni (hAMSC), mezenchymalne komórki podścieliska kosmówki (hCMSC) oraz komórki trofoblastu kosmówki (hCTC). Wśród tych komórek wykazano obecność komórek macierzystych posiadających cechy pluripotencjalności. Pochodzące z łożyska komórki macierzyste wykazują ekspresję markerów specyfi cznych dla embrionalnych komórek macierzystych (SSEA-3, SSEA-4, TRA1-60, TRA1-81), a także mają zdolność do różnicowania się w kierunku komórek reprezentujących trzy listki zarodkowe: mezodermę, endodermę i ektodermę, np. do adipocytów, osteoblastów, chondrocytów, endoteliocytów, komórek mięśnia szkieletowego, kardiomiocytów, neuronów, komórek glejowych, komórek trzustki i hepatocytów. Komórki izolowane z łożyska ludzkiego charakteryzują się niską immunogennością i nie wykazują tendencji do transformacji nowotworowej po przeszczepieniu zwierzętom doświadczalnym. Komórki macierzyste pochodzące z łożyska ludzkiego wydają się wartościową populacją komórek dla medycyny regeneracyjnej oraz w leczeniu wielu chorób, do tej pory nieuleczalnych.
EN
Such a large organ as human placenta could be potentially a very effi - cient source of stem cells. In addition, taking of this organ is not invasive and controversial process. Isolation of cells from diff erent layers of the placenta is divided into several stages. From fetal part of human placenta hAEC (human amniotic epithelial cells), hAMSC (human amniotic mesenchymal stromal cells), hCMSC (human chorionic mesenchymal stromal cells) and hCTC (human chorionic trophoblastic cells) can be isolated. Among these cells are present stem cells, which are characterized by pluripotency. Stem cells derived from placenta express markers specifi c for embryonic stem cells (SSEA-3, SSEA-4, TRA1-60, TRA1-81), and they have the ability to diff erentiate towards cells representing three germ layers: mesoderm, endoderm and ectoderm, for example: adipocytes, osteoblasts, chondrocytes, endotheliocytes, skeletal muscle cells, cardiomyocytes, neurons, glial cells, pancreatic cells and hepatocytes. Cells isolated from human placenta are also characterized by low immunogenicity and tumorigenicity after implantation to the animals. Placenta-derived stem cells seem to be valuable population of cells for regenerative medicine and in a treatment of terminal diseases.

Discipline

Year

Volume

65

Issue

5-6

Pages

80–89

Physical description

Contributors

  • Zakład Histologii Katedry Morfologii Śląskiego Uniwersytetu Medycznego ul. Medyków 18 40-752 Katowice tel. 32 208 83 74

References

  • 1. Parolini O., Alviano F., Bagnara G.P. et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the fi rst international workshop on placenta derived stem cells. Stem Cells 2008; 26: 300–311.
  • 2. Insausti C.L., Blanquer M., Bleda P. et al. The amniotic membrane as a source of stem cells. Histol. Histopathol. 2010; 25: 91–98.
  • 3. Miki T., Lehman T., Cai H. et al. Stem cell characteristics of amniotic epithelial cells,. Stem Cells 2005; 23: 1549–1559.
  • 4. Soncini M., Vertua E., Gibelli L. et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J. Tissue Eng. Regen. Med. 2007; 1: 296–305.
  • 5. Machaliński B.: Nieembrionalne komórki macierzyste a regeneracja układu nerwowego. Via Medica 2008; 4: 15–19.
  • 6. Miki T, Strom S.C. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2006; 2: 133–142.
  • 7. Miki T., Mitamura K., Ross M.A. et al. Identifi cation of stem sell marker – positive cells by immunofl uorescence in term human amnion. J. Repr. Immun. 2007; 75: 91–96.
  • 8. Hwang J.H., Seok O.S., Song H.R. et al. HOXC10 as a Potential Marker for Discriminating between amnion- and decidua- derived mesenchymal stem cells. Clon. Stem Cells. 2009; 2: 269–279.
  • 9. Miki T., Marongiu F., Ellis E. et al. Isolation of amniotic epithelial stem cells. Curr. Protoc. Stem Cell Biol. 2007; 1E.3.1– 1E.3.8.
  • 10. Portmann-Lanz C.B., Schoeberlein A., Huber A. et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol. 2006; 194: 664–673.
  • 11. Tanaka S., Kunath T., Hadjantonakis A.K. et al.: Promotion of trophoblast stem cell proliferation by FGF4. Science 1998; 282: 2072–2075.
  • 12. Dominici M., Le Blanc K., Mueller I. et al. Minimal Criteria for defi ning multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.
  • 13. Alviano F., Fossati V., Marchionni C. et al. Term amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to diff erentiate into endothelial cells in vitro. BMC Dev. Biol. 2007; 7:11; doi: 10.1186/1471–213X-7-11.
  • 14. Hakomori, S. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconj. J. 2004; 21: 125–137.
  • 15. Hunt J.S., Petroff M.G., McIntire R.H. et al. GLA-G and immune tolerance in pregnancy. FASEB J. 2005; 19: 681–693.
  • 16. Ilancheran S, Michalska A, Peh G. et al. Stem cells derived from human fetal membranes display multi-lineage diff erentiation potential. Biol. Reprod. 2007; 77: 577–588.
  • 17. Takashima S., Ise H., Zhao P. et al. Human amniotic epithelial cells possess hepatocyte- like characteristics and functions. Cell. Struct. Funct. 2004; 29: 73–84.
  • 18. Matikainen T., Laine J. Placenta-an alternative source of stem cells. Toxicol. Appl. Pharmacol. 2005; S544–S549.
  • 19. Sakuragawa N., Enosawa S., Ishii T. et al. Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J. Hum. Genet. 2000; 45: 171–176.
  • 20. Kakishita K., Elwan M.A., Nakao N. et al. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp. Neurol. 2000; 165: 27–34.
  • 21. Sakuragawa N., Thangavel R., Mizuguchi M. et al. Expression of markers for both neuronal and lial cells in human amniotic epithelial cells. Neurosci. Lett. 1996; 209: 9–12.
  • 22. Kakishita K., Nakao N., Sakuragawa N. et al. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. 2003; 980: 48–56.
  • 23. Kong X.Y., Cai Z., Pan L. et al. Transplantation of human amniotic calles exerts neuroprotection in MPTP-inducted Parkinson disease mice. Brain Res. 2008; 1205: 108–115.
  • 24. Liu T., Wu J., Huang Q. et al. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock 2008; 29: 603–611.
  • 25. Evangelista M., Soncini M., Parolini O. Placenta -derived stem cells: new hope for cell therapy? Cytotechnology 2008; 58: 33–42.
  • 26. Zhao P., Ise H., Hongo M. et al. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 2005; 79: 528–535.
  • 27. Ventura C., Cantoni S., Bianchi F. et al. Hyaluronan mixed esters of butyric and retinoic acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infracted rat hearts. J. Biol. Chem. 2007; 282: 14243–14252.
  • 28. Wei J.P., Zhang T.S., Kawa S. et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant. 2003; 12: 545–552.
  • 29. Steigman S.A., Fauza D.A. Isolation of Mesenchymal Stem Cells from Amniotic Fluid and Placenta. Stem Cell Biol. 2007; Chapter 1: Unit 1E.2. DOI: 10.1002/9780 470151808.sc01e02s1.
  • 30. Li H., Niederkorn J.Y., Neelam S. et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest. Ophthalmol. Vis. Sci. 2005; 46: 900–907.
  • 31. Changdong l., Weiyuan Z., Xiaoxia J. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogenic immune cell. Cell. Tissue Res. 2007; 330: 437–446.
  • 32. Dazzi F., Marelli -Berg F. Mesenchymal stem cells for graft-versus-host disease: Close encounters with T cells. Eur. J. Immunol. 2008; 38: 1479–1482.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-4cd4e23a-a02d-405e-97cb-3cd3939dd31c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.