PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 105 | 225-232
Article title

Linear differential equations of second, third, and fourth order

Content
Title variants
Languages of publication
EN
Abstracts
EN
We study the linear differential equations of second, third, and fourth order, accepting to know solutions of the corresponding homogeneous equation, then we show how to obtain one more solution for the homogeneous case and a particular solution for the original equation.
Discipline
Year
Volume
105
Pages
225-232
Physical description
Contributors
  • Depto. Física, ESFM, Instituto Politécnico Nacional, Edif. 9, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, Col. Lindavista CP 07738, CDMX, México
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, Col. Lindavista CP 07738, CDMX, México
References
  • [1] G. Bahadur-Thapa, A. Domínguez-Pacheco, J. López-Bonilla, On the linear differential equation of second order, Prespacetime Journal 6(10) (2015) 999-1001.
  • [2] Z. Ahsan, Differential equations and their applications, Prentice-Hall, New Delhi (2004).
  • [3] L. Elsgotz, Differential equations and variational calculus, MIR, Moscow (1983).
  • [4] M. V. Soare, P. Teodorescu, I. Toma, Ordinary differential equations with applications to mechanics, Springer, Berlin (2007).
  • [5] J. López-Bonilla, S. Vidal-Beltrán, S. Yáñez-San Agustín, Homogeneous linear differential equation of second order, Prespacetime Journal 7(13) (2016) 1786-1788.
  • [6] V. Barrera, J. López-Bonilla, R. López-Vázquez, On the particular solution of p y’’+q y’+r y=Φ, Prespacetime Journal 7(12) (2016) 1677-1679.
  • [7] G. K. Srinivasan, A note on Lagrange’s method of variation of parameters, Missouri J. Math. Sci. 19 (2007) 11-14.
  • [8] T. Quinn, S. Rai, Variation of parameters in differential equations, PRIMUS 23(1) (2012) 25-44.
  • [9] J. López-Bonilla, D. Romero-Jiménez, A. Zaldívar-Sandoval, Variation of parameters method via the Riccati equation, Prespacetime Journal 7(8) (2016) 1217-1219.
  • [10] J. Bernoulli, Acta Eruditorum (1697).
  • [11] M. Greenberg, Application of Green’s function in science and engineering, Prentice-Hall, New Jersey (1971).
  • [12] C. Lanczos, Linear differential operators, Dover, New York (1997).
  • [13] J. López-Bonilla, J. Yaljá Montiel-Pérez, A. Zaldívar-Sandoval, 2th order linear differential operator in its exact form, J. Vect. Rel. 5(1) (2010) 139-141.
  • [14] A. Hernández-Galeana, J. López-Bonilla, J. Rivera-Rebolledo, Second order linear differential equation in its exact form, The SciTech, J. of Science & Technology 2(1) (2013) 34-36.
  • [15] H. R. Lewis, Classical and quantum systems with time-dependent harmonic oscillator-type Hamiltonians, Phys. Rev. Lett. 18 (1967) 510-512.
  • [16] H. R. Lewis, Class of exact invariants for classical and quantum time-dependent harmonic oscillators, J. Math. Phys. 9(11) (1968) 1976-1986.
  • [17] P. G. L. Leach, K. Andriopoulos , The Ermakov equation: A commentary, Appl. Anal. Discrete Math. 2 (2008) 146-157.
  • [18] Z. Ahsan, R. Cruz-Santiago, J. López-Bonilla, A simple deduction of the Lewis invariant, Aligarh Bull. Maths. 31(1-2) (2012) 1-4.
  • [19] S. Álvarez-Ballesteros, J. López-Bonilla, Lewis constant in the Ermakov-Milne-Pinney equation, Open J. of Appl. Theor. Maths. 3(1) (2017) 1-3.
  • [20] V. P. Ermakov, Second-order differential equations. Conditions of complete integrability, Univ. Izv. Kiev 20 (1880) 1-25.
  • [21] W. Milne, The numerical determination of characteristic numbers, Phys. Rev. 35(7) (1930) 863-867.
  • [22] E. Pinney, The nonlinear differential equation y’’ + p(x)y +cy -3 = 0, Proc. Am. Math. Soc. 1(5) (1950) 681-681.
  • [23] B. L. Moreno-Ley, J. López-Bonilla, B. Man Tuladhar, On the 3rd order linear differential equation, Kathmandu Univ. J. of Sci. Eng. Tech. 8(2) (2012) 7-10.
  • [24] Z. Ahsan, R. Cruz-Santiago, J. López-Bonilla, Linear differential equations of third and fourth order, Aligarh Bull. Maths. 13(1) (2012) 5-7.
  • [25] J. M. Hoene Wronski, Réfutation de la théorie des fonctions analytiques de Lagrange, Paris (1812).
  • [26] J. Clegg, A new factorization of a general second order differential equation, Int. J. Math. Educ. Sci. Techn. 37(1) (2006) 51-64.
  • [27] M. Ioffe, H. J. Korsch, Nonlinear supersymmetric (Darboux) covariance of the Ermakov-Milne-Pinney equation, Phys. Lett. A311 (2003) 200-205.
  • [28] E. S. Kryachko, Few sketches on connections between the Riccati and Ermakov-Milne-Pinney equations, Int. J. Quantum Chem. 109(13) (2009) 2897-2902.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-49baf88c-f0c9-4a21-8de3-5747ed5ed82c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.