Preferences help
enabled [disable] Abstract
Number of results
2019 | 10 | 74-91
Article title

Skały impaktowe struktury Puczeż-Katunki, platforma wschodnio-europejska, Rosja

Title variants
Impact rokcs from the Puchezh-Katunki structure, East-European Platform, Russia
Languages of publication
The complex Puchezh-Katunki (PK) structure was created in the area of the Vladimir-Vyatka dislocation zone on the crystalline basement of the East European platform. The crater ca 80 km in diameter is located north of the city Nizhny Novgorod and is covered by thick layers of Mesozoic sediments. Shocked rocks, mainly gneisses, have been described. Recrystallised feldspar-quartz melt is the most common component in specimens of impactites. The melt is preserved in the form of various clasts showing wavy nebulous contacts within the surrounding microcristalline or isotropic matrix. Planar deformation features (PDFs) were observed in the quartz grains, including toasted quartz. Their number ranges from one to three. The PDF lines are limited to the grain boundaries or cross them. A few ‘kinky’ cracks have been noted in the biotite plates. Lobate inter-grain contacts prove that quartz is recrystallised by grain-boundary migration. The recrystallized quartz also occurs in the form of ballen quartz and trydimite. Both types of quartz are numerous in the material under study. Tridymite tiles show patchy extinction. Various matrices formed from rock melts are microcrystalline (clay minerals) and contain fragments of isotropic glass, also in the form of spherules. In matrix, some clasts are in the form of the ballen quartz, sometimes with relics of PDFs. Matrices of recrystallized rock melts are characterised by different colours, number of clasts and are distinctly separated from each other. The melts during the impact process are immiscible. Secondary mineralization is more frequent in the rock melts and less frequent in the metamorphosed gneisses. Magnetite, pyrite and zeolites are the most common secondary minerals.
Physical description
  • Instytut Biologii Środowiskowej, Uniwersytet Wrocławski, Przybyszewskiego 63, 51-148 Wroclaw
  • Dypvik H., Plado J., Heinberg C., Hĺkansson E., Pesonen L.J., Schmitz B., Raiskila S., 2008, Impact structures and events – a Nordic perspective, Episodes, 31, s. 107–114.
  • Ferriére L., Koeberl C., 2007, Ballen quartz, an impact signature: new occurrence in impact melt breccia at Rochechouart-Chassenon impact structure, France, 70th Annual Meteoritical Society Meeting, Meteoritics and Planetary Science, supplement, vol. 42, p. 5079.
  • Ferriére L., Koeberl C., Reimold W.U., Libowitzky E., Greshake A., 2008, Ballen quartz and cristobalite in impact breccias: types, occurrence, and possible origin, Large Meteorite Impacts and Planetary Evolution IV, LPI Contribution No. 1423, paper 3011.
  • Ferriére L., Koeberl C., Reimold W.U., 2009, Characterisation of ballen quartz and cristobalite in impact breccias: new observations and constraints on ballen formation, European Journal of Mineralogy, 21, s. 203–217.
  • Ferriére L, Koeberl C, Libowitzky E, Reimold W.U., Greshake A., Brandstätter F., 2010, Ballen quartz and cristobalite in impactites: New investigations. W: R.L. Gibson, W.U. Reimold. (Eds) Large meteorite impacts and planetary evolution IV, s. 609–618, GSA Special Paper 465, Geological Society of America, Boulder, Colorado.
  • Grieve R.A.F., Cintala M.J., 1991, Differential scaling of crater parameters: implications for the observed terrestrial record, Lunar and Planetary Science Conference, 22, s. 493–494.
  • Grieve R.A.F., Langenhorst F., Stöffler D., 1996, Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience, Meteoritics & Planetary Science, 31, s. 6–35.
  • Gurov E.P., Gurova H.P., Yamnichenko A.Y., 1995, The structure of complex impact craters and estimation of their preservation stage, Lunar and Planetary Science Conference, 26, s. 535–536.
  • Gurov E.P., Koeberl C., Reimold W.U., 1998, Petrography and geochemistry of target rocks and impactites from the Ilyinets crater, Ukraine. Meteoritics & Planetary Science, 33, s. 1317–1333.
  • Gurov E.P., Shekhunova S.B., Permyakov V.V., 2015, Accessory and opaque minerals in impact melt rocks of the Boltysh structure, Ukraine, Meteoritics & Planetary Science, 50, s. 1139–1155.
  • Holm-Alwmark S., Alwmark C., Lindström S., Ferričre L., Scherstén A., Masaitis V.L., Mashchak M.S., Naumov M.V., 2016, An Early Jurassic 40Ar/39Ar age for the Puchezh-Katunki impact structure (Russia) – no causal link to an extinction event, 79th Annual Meeting of the Meteoritical Society, Berlin, Germany, LPI Contribution No. 1921, p. 6171.
  • Jackson J.C., Horton J.W. Jr., Chou I-M., Belkin H.E., 2011, Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure, American Mineralogist, 96, s. 81–88.
  • Jackson J.C., Horton J.W. Jr., Chou I-M., Belkin H.E., 2016, Coesite in suevites from the Chesapeake Bay impact structure, Meteoritics & Planetary Science, 51, s. 946–965.
  • Kolodyazhnyi S.Yu., 2014, Structural assemblies of the Vladimir–Vyatka dislocation zone and the position of the Puchezh–Katunki crater, East European Platform. Geotectonics, 48, s. 104–121.
  • Kosina R., 2015, Impaktyty struktury Popigaj, Syberia. Acta Societatis Metheoriticae Polonorum, 6, s. 74–89.
  • Kosina R., 2017, Impaktyty astroblemy Ilińce, Ukraina. Acta Societatis Metheoriticae Polonorum, 8, s. 73–83.
  • Masaitis V.L., 1999, Impact structures of northeastern Eurasia: The territories of Russia and adjacent countries, Meteoritics & Planetary Science, 34, s. 691-711.
  • Masaitis V.L., 2005a, Morphological, structural and lithological records of terrestrial impacts: an overview, Australian Journal of Earth Sciences, 52, s. 509–528.
  • Masaitis V.L., 2005b, Redistribution of lithologies in impact-induced dikes of impact structures, s. 111-129. W: C. Koeberl, H. Henkel (Eds) Impact Tectonics, Springer.
  • Masaitis V.L., Raikhlin A.I., Mashchak M.S., 1980, Immiscibility of impact melts. Lunar and Planetary Science, 11, s. 677–679.
  • Masaitis, V.L., Mashchak M.S., 1990, Puchezh-Katunki astrobleme: structure of central uplift and transformation of composing rocks, Meteoritics, 25, s. 383.
  • Masaitis V.L., Naumov M.V., 1993, Puchezh-Katunki impact crater: preliminary model of hydrothermal circulation system, Meteoritics, 28, s. 390–391.
  • Masaitis V.L., Raikhlin A.I., Selivanovskaya T.V., Mashchak M.S., Naumov M.V., 2019, Petrography of shock-metamorphosed crystalline rocks and impactites. W: V.L. Masaitis (Ed.) Popigai impact structure and its diamond-bearing rocks, Impact Studies, s. 77-126, Springer, Cham,
  • Mason B., 1972, Lunar tridymite and cristobalite, American Mineralogist, 57, s. 1530–1535.
  • Naumov M.V., 1992, Zeolitization of impactites and breccia in Puchezh-Katunki astrobleme, Lunar and Planetary Science Conference, 23, s. 967–968.
  • Naumov M.V., 1993, Zonation of hydrothermal alteration in the central uplift of the Puchezh-Katunki astrobleme, Meteoritics, 28, s. 408–409.
  • Osinski G.R., 2005, Hydrothermal activity associated with the Ries impact event, Germany, Geofluids, 5, s. 202–220.
  • Osinski G.R., Grieve R.A.F., Collins G.S., Marion C., Sylvester P., 2008, The effect of target lithology on the products of impact melting, Meteoritics & Planetary Science, 43, s. 1939–1954.
  • Pevzner L.A., Kirjakov A.F., Vorontsov A.K., Masaitis V.L., Mashchak M.S., Ivanov B.A., 1992, Vorotilovskaya drillhole: first deep drilling in the central uplift of large terrestrial impact crater, Lunar and Planetary Science Conference, 23, s. 1063–1064.
  • Reimold W.U., 1998, Exogenic and endogenic breccias: a discussion of major problematics, Earth-Science Reviews, 43, s. 25–47.
  • Taylor L.A., Misra K.C., 1975, Pyroxene-phyric basalt 15075: petrography and petrogenesis, Proceedings 6th Lunar Science Conference, 1, s. 165–179.
  • Whitehead J., Spray J.G., Grieve R.A.F., 2002, Origin of ‘‘toasted’’ quartz in terrestrial impact structures, Geology, 30, s. 431–434.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.