Preferences help
enabled [disable] Abstract
Number of results
2018 | 111 | 87-99
Article title

Effect on Major Solar Flares on AR 10720 associated with Halo Coronal Mass Ejections (CMEs)

Title variants
Languages of publication
This research will focus on the major solar flares (X-Class) from active region AR 10720. All the data were retrieved and analysed from authority agencies which are SOHO and NOAA. From X-ray data, AR 10720 was producing 5 major solar flares namely X1.2, X2.6, X3.8, X1.3 and X7.1 from 106 of total solar flares. From data analysis, all major solar flares were associated with full halo coronal mass ejection (CME) except for solar flare X1.2. If major solar flare happened early, it will potentially to happened again in the same AR in the range 1-3 days. The speed of halo-CME was producing more than 1,000 kms-1. The Dst index shows all major solar flares affected the earth magnetic field and lead to geomagnetic storms in the ranges 1-3 days after the flares events. From proton speed data shows there is no obvious pattern towards major solar flares. From of all these data, prediction of major solar flares can be made in futures research.
Physical description
  • School of Physics, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia
  • School of Physics, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia
  • [1] J. Raulin and A. A. Pacini, Solar Radio Emissions, Adv. Sp. Res. vol. 35, pp. 739–754, 2005.
  • [2] X. Moussas, J. M. Polygiannakis, P. Preka-Papadema, and G. Exarhos, Solar Cycles: A Tutorial, Adv. Sp. Res., vol. 35, no. 5, pp. 725–738, 2005.
  • [3] M. G. Kivelson and C. T. Russell, Introduction to space physics. Cambridge University Press, 1995.
  • [4] P. V Foukal, Solar Astrophysics. John Wiley & Sons, 2008.
  • [5] N. Gopalswamy, Coronal Mass Ejections: Initiation And Detection, Adv. Sp. Res. vol. 31, no. 4, pp. 869–881, 2003.
  • [6] A. Savcheva et al., THE RELATION Between SOLAR ERUPTION TOPOLOGIES And OBSERVED FLARE FEATURES. I. FLARE RIBBONS, Astrophys. J. vol. 810, no. 2, 2015.
  • [7] M. Siarkowski, R. Falewicz, and P. Rudawy, Plasma Heating in the Very Early Phase of Solar Flares, Astrophys. J. vol. 705, no. 2, pp. L143–L147, 2009.
  • [8] H. S. Hudson, Global Properties of Solar Flares, Space Sci. Rev. vol. 158, no. 1, pp. 5–41, 2011.
  • [9] M. B. Kennedy, R. O. Milligan, M. Mathioudakis, and F. P. Keenan, Solar flare impulsive phase emission observed with SDO/EVE. Astrophys. J. vol. 779, no. 1, 2013.
  • [10] A. C. Sterling, Sigmoid CME source regions at the Sun: some recent results, J. Atmos. Solar-Terrestrial Phys. vol. 62, no. 16, pp. 1427–1435, 2000.
  • [11] Sterling et al., Yohkoh Sxt and Soho EIT Observations of Sigmoid To Arcade Evolution of Structures Associated With Halo Coronal Mass Ejections, Astrophys. J. vol. 532, pp. 628–647, 2000.
  • [12] R. Liu, C. Liu, S. Wang, N. Deng, and H. Wang, Sigmoid-To-Flux-Rope Transition Leading To A Loop-Like Coronal Mass Ejection, Astrophys. J. Lett. vol. 725, pp. 84–90, 2010.
  • [13] T. G. Forbes and L. W. Acton, “Reconnection and Field Line Shrinkage in Solar Flares, Astrophys. J., vol. 459, p. 330, 1996.
  • [14] M. J. Aschwanden and D. Alexander, Flare Plasma Cooling From 30 MK Down to 1 MK Modeled From Yohkoh, GOES, and TRACE Observations During The Bastille Day Event (14 July 2000), Sol. Phys. vol. 204, no. 1/2, pp. 91–120, 2001.
  • [15] J. W. Brosius, Chromospheric Evaporation and Warm Rain during a Solar Flare Observed in High Time Resolution with the Coronal Diagnostic Spectrometer aboard the Solar and Heliospheric Observatory, Astrophys. J. vol. 586, no. 2, pp. 1417–1429, 2003.
  • [16] L. Fletcher et al., An Observational Overview of Solar Flares, Space Sci. Rev. vol. 159, no. 1–4, pp. 19–106, 2011.
  • [17] E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, and R. Menegazzo, Search For Correlations Between Solar Flares and Decay Rate of Radioactive Nuclei, Phys. Lett. B, vol. 720, pp. 116–119, 2013.
  • [18] N. Gopalswamy, Corona Mass Ejections: a Summary of Recent Results, Proc. 20th Natl. Sol. Phys. Meet. pp. 108–130, 2010.
  • [19] R. Qahwaji and T. Colak, Automatic Short-Term Solar Flare Prediction Using Machine Learning And Sunspot, Sol. Phys. vol. 241, no. 1, pp. 195–211, 2007.
  • [20] B. Somov, T. Sakaol, T. Kosugi, H. Hudson, and S. Masuda, Modeling Large Solar Flares, Adv. Sp. Res. vol. 32, no. 12, pp. 2439–2450, 2003.
  • [21] Y. Yuan, F. Y. Shih, J. Jing, and H.-M. Wang, Automated Flare Forecasting Using A Statistical Learning Technique, Res. Astron. Astrophys. vol. 10, no. 8, pp. 785–796, 2010.
  • [22] H. Koskinen et al., Space Weather Effects Catalogue, Sp. Weather Int. J. Res. Appl. no. 2.2, pp. 1–41, 2001.
  • [23] Z. Zainal et al., Radio Frequency Interference In Solar Monitoring Using CALLISTO, New Astron. Rev. vol. 67, pp. 18–33, 2015.
  • [24] P. F. Chen, C. Fang, K. Shibata, and Y. H. Tang, Coronal mass ejections and emerging flux, Adv. Sp. Res. vol. 30, no. 3, pp. 535–543, 2002.
  • [25] J. Zhang, K. P. Dere, R. A. Howard, M. R. Kundu, and S. M. White, On the Temporal Relationship between Coronal Mass Ejections and Flares, Astrophys. J. vol. 559, no. 1, pp. 452–462, 2001.
  • [26] V. Ontiveros and A. Vourlidas, Quantitative Measurements Of Coronal Mass Ejection-Driven Shocks From LASCO Observations, Astrophys. J. vol. 693, no. 1, pp. 267–275, 2009.
  • [27] J. Jing, H. Song, V. Abramenko, C. Tan, and H. Wang, The Statistical Relationship between the Photospheric Magnetic Parameters and the Flare Productivity of Active Regions, Astrophys. J. vol. 652, no. 2, pp. 1796–1796, 2006.
  • [28] M. Youssef, On The Relation Between The CMEs and The Solar Flares, NRIAG J. Astron. Geophys. vol. 1, no. 2, pp. 172–178, 2012.
  • [29] A. Bemporad, A. C. Sterling, R. L. Moore, and G. Poletto, A New Variety of Coronal Mass Ejection: Streamer Puffs from Compact Ejective Flares, Astrophys. J. vol. 635, no. 2, pp. 189–192, 2005.
  • [30] Y. Zhu, W. Zong, and S. Pei, Relationship between X-class Flares and Geomagnetic Effects, Chinese Astronomy and Astrophysics, 2016. .
  • [31] W. D. Gonzalez, B. T. Tsurutani, and A. L. Clúa de Gonzalez, Interplanetary origin of geomagnetic storms, Space Sci. Rev. vol. 88, no. 3/4, pp. 529–562, 1999.
  • [32] M. Rockenbach et al., Geomagnetic storm’s precursors observed from 2001 to 2007 with the Global Muon Detector Network (GMDN), Geophys. Res. Lett. vol. 38, no. 16, pp. 5–8, 2011.
  • [33] H. V. Cane, I. G. Richardson, and O. C. St. Cyr, Coronal Mass Ejections, Interplanetary Ejecta and Geomagnetic Storms, Geophys. Res. Lett. 2000, vol. 27, no. 21, pp. 3591–3594
  • [34] L. M. Green, P. Démoulin, C. H. Mandrini, and L. Van Driel-Gesztelyi, How Are Emerging Flux, Flares And CMEs Related To Magnetic Polarity Imbalance In MDI Data?, Sol. Phys. vol. 215, no. 2, pp. 307–325, 2003.
  • [35] N. Deng, C. Liu, D. P. Choudhary, and H. Wang, Rapid Enhancement Of Sheared Evershed Flowalong The Neutral Line Associated With An X6.5 Flare Observed By HINODE, Astrophys. J. Lett. vol. 733, no. 1 PART 2, p. 66, 2011.
  • [36] I. Sammis, F. Tang, and H. Zirin, The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots, Astrophys. J. vol. 540, no. 1, pp. 583–587, 2000.
  • [37] V. Polito et al., Analysis and Modelling of Recurrent Solar Flares Observed With Hinode / EIS on March 9 , 2012, Astron. Astrophys. vol. 601, no. May, 2017.
  • [38] V. V. Grechnev et al., An extreme solar event of 20 January 2005: Properties of the flare and the origin of energetic particles, Sol. Phys. vol. 252, no. 1, pp. 149–177, 2008.
  • [39] N. Gopalswamy, H. Xie, S. Yashiro, and I. Usoskin, Coronal Mass Ejections and Ground Level Enhancements, 29th Int. Cosm. Ray Conf. Pune, pp. 101–104, 2005.
  • [40] D. F. Webb, Understanding CMEs and their source regions, J. Atmos. Solar-Terrestrial Phys. vol. 62, no. 16, pp. 1415–1426, 2000.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.