Preferences help
enabled [disable] Abstract
Number of results
2018 | 102 | 101-115
Article title

To the synthesis of classical and quantum physic

Title variants
Languages of publication
The possibility has been validated to adjust fundamental differences between classical mechanics and quantum mechanics from the position of the wave theory of matter structure. A derivation of the Planck radiation law has been offered proceeding from the assumption the wave is a true quantum of radiation. The principles of photoeffect have been explained from the positions of classical phisycs and supplemented with consideration of the photoelectric yield. The law of forming spectral series has been obtained with no involvement of quantum numbers and no assumption of electron orbit-to-orbit transition. A deterministic derivation of the Schrödinger stationary wave equation has been given as excluding the necessity of its probability interpretation. The possibility has been shown to construct in unified manner mechanics of macro- and microprocesses considering discretness of wave processes.
Physical description
  • Institute of Integrative Investigations, Haifa, Israel
  • [1] Mehra J., Rechenberg H. The Historical Development of Quantum Theory. V. 1. Springer Verlag, 1982.
  • [2] Tomson W. Collected Papers in Physics and Engineering. Cambridge University Press, 1912. ASIN B0000EFOL8
  • [3] Popper K.R. Quantum theory and the schism in physics. – London; New York, 1982
  • [4] Feynman, R. (1964). The Character of Physical Law. Messenger Lectures, 1964.
  • [5] Vavilov S.I. Experimental foundations of the theory of relativity. Collection of works, vol. 4. - Moscow: Acad. of Sciences USSR , 1956 (in Russian).
  • [6] Planck M. Über eine Verbesserung der Wienschen Spektralgleichung. Verh. andl. Dtsch. Phys. Ges. 1900, 2, 237–245.
  • [7] Planck, M. Zur Geschichte der Auffindung des physikalischen Wirkungsquantums. Naturwissenschaften, 1943, 31 (14–15), 153–159.
  • [8] Einstein A., Infeld L. Evolution of Physics. Cambridge, 1938.
  • [9] Crawford F. Waves. Berkeley Physics course. Vol. 3, McGraw-Hill, 1968.
  • [10] Etkin V. Energodynamics (Thermodynamic Fundamentals of Synergetics).- New York, 2011, 480 p.
  • [11] Etkin VA. Improving the efficiency of analysis method of dimensions. The Scientific Method, 2017, 4. P. 32-37.
  • [12] Etkin V. Rethinking Plank’s radiation law. Global Journal of Physics, 2017, Vol. 5, № 2. Р. 547-553.
  • [13] De Groot S.R., Mazur P. Non-equilibrium Thermodynamics. – Amsterdam, 1962.
  • [14] Haase R. Thermodynamik der irreversiblen Prozesse. Darmstadt, 1963.
  • [15] Etkin VA. On Wave Nature of Matter. World Scientific News 69, 220-235 (2017).
  • [16] Jeans J.H. The New Background of Science. — London, 1933.
  • [17] Schrodinger E. Ann. Physik, 1926, 79, 361.
  • [18] Filippov A.T. Many-sided soliton. - Moscow: Science, 1990, 288 p.(in Russian).
  • [19] Hertz, H. (1887). On an effect of ultra-violet light upon the electrical discharge. Annalen der Physik. 267 (8): S. 983–1000. Bibcode:1887AnP...267..983H
  • [20] Stoletow, A. (1888). On a kind of electric current produced by ultra-violet rays. Phil. Mag. Ser. 5 26(160): 317. DOI:10.1080/14786448808628270.
  • [21] Einstein A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristishen Cesichtspunkt. Annalen der Physik 1905, 17(4), 549–560
  • [22] Richter M. et al. Extreme ultraviolet laser excites atomic giant resonance. Phys. Rev. Lett. April 2009.
  • [23] Demjanov V.V. Phys. Lett. A 374, 1110-1112 (2010).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.