Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 112-120

Article title

STUDY OF THE EFFECT OF THE PHYSICOCHEMICAL PROPERTIES OF CHITOSAN ON ITS HAEMOSTATIC ACTIVITY

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitosan are biopolymers that are actively used for the production of local haemostatic agents. The physicochemical characteristics that determine its biological properties include the molecular weight and the deacetylation degree. However, there is no linear relationship between these parameters and haemostatic activity. The most reliable method of confirming the effectiveness is still in vivo experiments. The ability to initiate haemostasis depends on the conformational transition of chitosan macromolecules. The highest efficiency in vitro was for samples in which the transition of a significant part of the molecules from the ‘rigid rod’ state to the ‘globule’ occurred at physiological pH. It is proposed to expand the list of indicators of chitosan that can be controlled to evaluate the quality of raw materials, related to haemostatic activity, to include the definition of the conformational transition at physiological pH.

Contributors

  • Department of Pharmaceutical Chemistry, St. Petersburg State Chemical and Pharmaceutical University,
  • N.Petrov NMRC of Oncology Health Department Russian Federation,
  • Department of Pharmaceutical Chemistry, St. Petersburg State Chemical and Pharmaceutical University,
  • Department of Pharmaceutical Chemistry, St. Petersburg State Chemical and Pharmaceutical University,

References

  • Samohvalov I.M., Reva V.A., Pronchenko A.A., Yudin A.B., Denisov A.V.; (2013) Local Hemostatic Measures: The new era in delivery of prehospital aid. Politravma. Reabilitatsiya 1, 80–86.
  • Hu Zh, Lu S, Cheng Y, Kong S, Li S, Li Ch, Yang L; (2018) Investigation of the Affects of Molecular Parameters on the Hemostatic Properties of Chitosan. Molecules 23, 3147. DOI: 10.3390/molecules23123147.
  • Singh M.K., Prajapati S.K., Mahor A., Rajput N., Singh R.; (2011) Chitosan: A novel excipient in pharmaceutical formulation: A review. Int J Pharm Sci Res 2(9), 2266–2277. DOI: 10.13040/IJPSR.0975-8232.2(9)2266-77.
  • Yadu N.V.K., Raghvendrakumar M., Aswathy V., Parvathy P., Sunija S., Neelakandan M.S., Nitheesha Sh., Vishnu K.A.; (2017) Chitosan as Promising Materials for Biomedical Applications: Review. Res Dev Material Sci 2(4), 1–16. DOI:10.31031/RDMS.2017.02.000543.
  • Pogorielov M.V.; (2015) Chitosan as a Hemostatic Agent: Current State. European Journal of Medicine Series B 2, 24–33. DOI: 10.13187/ejm.s.b.2015.2.24.
  • Aranaz I., Mengíbar M., Harris R.; (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2), 203–230.
  • Mukatova M.D., Kirichko N.A., Romanenkova E.N.; (2015) Quality features of chitin and chitosan produced from crayfish crust-containing waste. Vestnik MSTU 18(4), 641–646.
  • Yang J., Tian F., Wang Zh., Wang Q., Zeng Y.-J., Chen Sh.-Q.; (2008) Effect of Chitosan Molecular Weight and Deacetylation Degree on Hemostasis. Journal of Biomedical Research Part B: Applied Biomaterials 84, 131–137.
  • Hattori H., Ishihara M.; (2015) Change in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan. Biomed Mater 10, 015014.
  • Aranaz I., Mengíbar M., Harris R., Panos I., Miralles B., Acosta N., Galed G., Heras A.; (2009) Functional Characterization of Chitin and Chitosan. Curr Chem Biol 3(2), 203–230.
  • Pan M., Tang Z., Tu J.; (2018) Porous chitosan microspheres containing zinc ion for enhanced thrombosis and hemostasis. Mater Sci Eng C. Mater Biol Appl 85, 27–36.
  • Li J., Wu X., Wu Y.; (2017) Porous chitosan microspheres for application as quick in vitro and in vivo hemostat. Mater Sci Eng C. Mater Biol Appl 77, 411–419.
  • Apryatina K.V., Tkachuk E.K., Smirnova L.A.; (2020) Influence of macromolecules conformation of chitosan on its graft polymerization with vinyl monomers and the copolymer properties. Carbohydrate Polymers 235, 115954. DOI:10.1016/j.carbpol.2020.115954.
  • Slivkin A.I., Belenova A.S., Shatalov G.V., Kuznetsov V.A., Firsova L.I.; (2014) Studying of chitosan solutions properties. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy 1, 134–137 (in Russian).
  • Lavertu M., Xia Z., Serreqi A.N., Berrada M., Rodrigues A., Wang D., Buschmann M.D., Gupta A; (2003) A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J Pharm Biomed Anal 32, 1149–1158. DOI:10.1016/S0731-7085(03)00155-9.
  • State Pharmacopoeia of the Russian Federation; (2018), Vol. 1, XIV edn, Moscow, 595–609.
  • Li J, Wu Y, Zhao L; (2016) Antibacterial activity and mechanism of chitosan with ultrahigh molecular weight. Carbohydr Polym 148, 200–205. DOI:10.1016/j.carbpol.2016.04.025.
  • Rinaudo M., Milas M., Le Dung Ph.; (1993) Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int J Biol Macromol 15(5, October), 281–285. DOI: 10.1016/0141-8130(93)90027-j.
  • Moiseev S.V., Kuzmina N.E., Krylov V.I., Yashkir V.A., Merkulov V.A.; (2014) The determination of molecular weight distribution parameters of dextrans with the diffusion-ordered NMR spectroscopy technique. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya 2, 9–15 (in Russian).
  • Kuzmina N.E., Moiseev S.V., Krylov V.I., Yashkir V.A., Merkulov V.A.; (2013) The possibility of using diffusion-ordered NMR spectroscopy for quantitative analysis of pullulan average molecular weight. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya 4, 8–11 (in Russian).
  • Li W., Chung H., Daeffler Ch., Johnson J.A., Grubbs R.H.; (2012) Application of 1H DOSY for Facile Measurement of Polymer Molecular Weights. Macromolecules 45(24), 9595–9603.
  • Wu Sh., Huang Zh., Yue J.; (2015) The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property. Carbohydrate Polymers 132, 295–303. DOI: 10.1016/j.carbpol.2015.06.030.
  • Kadyseva O.V., Bykov V.N., Strelova O.Y., Grebenyuk A.N.; (2020) Influence of physical and chemical properties of chitosan–based hemostatic products on their hemostatic efficiency in vitro and in vivo. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy 3, 72–80 (in Russian).

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-493c7630-66c1-4135-9b82-5083a1f10628
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.