Preferences help
enabled [disable] Abstract
Number of results
2018 | 109 | 115-130
Article title

The guide through brain-gut-enteric microbiota axis – regulation pathways and related disorders

Title variants
Languages of publication
The brain-gut axis is a complex system of connections between the central nervous system (CNS) and the digestive tract. Information within the axis is transmitted through many pathways (neural, endocrine, metabolic, immunological) and is strongly dependent on the microbiota inhabiting the gut. Therefore, the brain-gut axis is also called the “brain-gut-enteric microbiota axis”. Many studies are carried out to determine how it functions but the exact mechanism is still poorly understood. Unraveling the mystery of brain-gut-enteric microbiota axis seems to be crucial in understanding of many diseases and processes governing the human body.
Physical description
  • Faculty of Medicine, Wroclaw Medical University, 5 J. Mikulicza-Radeckiego Str., 50-345 Wroclaw, Poland
  • Faculty of Medicine, Wroclaw Medical University, 5 J. Mikulicza-Radeckiego Str., 50-345 Wroclaw, Poland
  • Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093, Lublin, Poland
  • Faculty of Medicine, Wroclaw Medical University, 5 J. Mikulicza-Radeckiego Str., 50-345 Wroclaw, Poland
  • Department of Gastroenterology and Hepatology, Wroclaw Medical University, 213 Borowska Str., 50-556 Wroclaw, Poland
  • Department of Gastroenterology and Hepatology, Wroclaw Medical University, 213 Borowska Str., 50-556 Wroclaw, Poland
  • [1] Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol 49(6) (2014) 681–9.
  • [2] Wood JD, Alpers DH, Andrews PL. Fundamentals of neurogastroenterology. Gut 45 Suppl 2 (1999) II6-II16.
  • [3] Hansen MB. The Enteric Nervous System I: Organisation and Classification. Pharmacol Toxicol 92(3) (2003) 105–13.
  • [4] Vanner S, Greenwood-Van Meerveld B, Mawe G, Shea-Donohue T, Verdu EF, Wood J, et al. Fundamentals of Neurogastroenterology: Basic Science. Gastroenterology (2016).
  • [5] Furness JB, Callaghan BP, Rivera LR, Cho H-J. The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control. In: Advances in experimental medicine and biology (2014) 39–71.
  • [6] Sasselli V, Pachnis V, Burns AJ. The enteric nervous system. Dev Biol 366(1) (2012) 64–73.
  • [7] Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O’Connor G, et al. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. J Cell Physiol 232(9) (2017) 2359–72.
  • [8] Qasim Aziz, David G. Thompson. Brain-gut axis in health and disease. Gastroenterology 114(3) (1998) 559–578.
  • [9] Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2) (2015) 203–9.
  • [10] Irwin MR, Miller AH. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun 21(4) (2007) 374–83.
  • [11] Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(1) (2004) 263–75.
  • [12] Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5) (2009) 306–14.
  • [13] Drossman DA, Hasler WL. Rome IV-functional GI disorders: disorders of gut-brain interaction. Gastroenterology 150(6) (2016) 1257–1261.
  • [14] Mayer EA, Savidge T, Shulman RJ. Brain–Gut Microbiome Interactions and Functional Bowel Disorders. Gastroenterology 146(6) (2014) 1500–12.
  • [15] Foster JA, McVey Neufeld K-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36(5) (2013) 305–12.
  • [16] Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLOS Biol 14(8) (2016) e1002533.
  • [17] Koppel N, Balskus EP. Exploring and Understanding the Biochemical Diversity of the Human Microbiota. Cell Chem Biol 23(1) (2016) 18–30.
  • [18] Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 489(7415) (2012) 220–30.
  • [19] Sartor RB, Wu GD. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology 152(2) (2017) 327–339.
  • [20] Group JCHMPDGW. Evaluation of 16S rDNA-Based Community Profiling for Human Microbiome Research. PLoS One 7(6) (2012) e39315.
  • [21] Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4(8) (2012) 1095–119.
  • [22] Collins SM, Bercik P. The Relationship Between Intestinal Microbiota and the Central Nervous System in Normal Gastrointestinal Function and Disease. Gastroenterology 136(6) (2009) 2003–14.
  • [23] Marques AH, O’Connor TG, Roth C, Susser E, Bjørke-Monsen A-L. The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front Neurosci 7 (2013) 120.
  • [24] Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 6(2) (2018) 133–48.
  • [25] Goehler LE, Gaykema RPA, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19(4) (2005) 334–44.
  • [26] Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci 105(43) (2008) 16767–72.
  • [27] Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 43(4) (2015) 817–29.
  • [28] Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36(10) (2014) 940–9.
  • [29] Wahlström A, Sayin SI, Marschall H-U, Bäckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab 24(1) (2016) 41–50.
  • [30] Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93(5) (2011) 1062–72.
  • [31] De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107(33) (2010) 14691–6.
  • [32] Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav 96(4–5) (2009) 557–67.
  • [33] Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 161(2) (2015) 264–76.
  • [34] Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GAW, Lowry CA. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8(20) (2006) 1–27.
  • [35] Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci 106(10) (2009) 3698–703.
  • [36] Németh H, Toldi J, Vécsei L. Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2(3) (2005) 249–60.
  • [37] Kaszaki J, Palásthy Z, Erczes D, Rácz A, Torday C, Varga G, et al. Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs. Neurogastroenterol Motil 20(1) (2008) 53-62.
  • [38] Keszthelyi D, Troost FJ, Jonkers DM, Kruimel JW, Leue C, Masclee AAM. Decreased levels of kynurenic acid in the intestinal mucosa of IBS patients: Relation to serotonin and psychological state. J Psychosom Res 74(6) (2013) 501–4.
  • [39] Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10) (2012) 701–12.
  • [40] Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2) (2012) 411–7.
  • [41] Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-Gut Microbiota Metabolic Interactions. Science 336(6086) (2012) 1262–7.
  • [42] Belkaid Y, Hand TW. Role of the Microbiota in Immunity and Inflammation. Cell 157(1) (2014) 121–41.
  • [43] Theodorou V, Ait-Belgnaoui A, Agostini S, Eutamene H. Effect of commensals and probiotics on visceral sensitivity and pain in irritable bowel syndrome. Gut Microbes 5(3) (2014) 430–629.
  • [44] Verdú EF, Bercik P, Verma-Gandhu M, Huang X-X, Blennerhassett P, Jackson W, et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55(2) (2006) 182–90.
  • [45] Lee YK, Mazmanian SK. Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System? Science 330(6012) (2010) 1768–73.
  • [46] Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, Zhu Q, et al. Commensal DNA Limits Regulatory T Cell Conversion and Is a Natural Adjuvant of Intestinal Immune Responses. Immunity 29(4) (2008) 637–49.
  • [47] Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 139(3) (2009) 485–98.
  • [48] Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 122(1) (2005) 107–18.
  • [49] Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci 108(13) (2011) 5354–9.
  • [50] Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285) (2010) 59–65.
  • [51] Shafquat A, Joice R, Simmons SL, Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol 22(5) (2014) 261–6.
  • [52] Consortium THMP, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, function and diversity of the healthy human microbiome. Nature 486(7402) (2012) 207–14.
  • [53] Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med 8(1) (2016) 51.
  • [54] Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, et al. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 12 (2018) 155.
  • [55] Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3) (2011) 307–17.
  • [56] Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res 43(2) (2008) 164–74.
  • [57] Kelly JR, Borre Y, O’ Brien C, Patterson E, El Aidy S, Deane J, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82 (2016) 109–18.
  • [58] Kato-Kataoka A, Nishida K, Takada M, Kawai M, Kikuchi-Hayakawa H, Suda K, et al. Fermented Milk Containing Lactobacillus casei Strain Shirota Preserves the Diversity of the Gut Microbiota and Relieves Abdominal Dysfunction in Healthy Medical Students Exposed to Academic Stress. Appl Environ Microbiol 82(12) (2016) 3649–58.
  • [59] Dinan TG, Stanton C, Cryan JF. Psychobiotics: A Novel Class of Psychotropic. Biol Psychiatry 74(10) (2013) 720–6.
  • [60] Chen X, D’Souza R, Hong S-T. The role of gut microbiota in the gut-brain axis: current challenges and perspectives. Protein Cell 4(6) (2013) 403–14.
  • [61] Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(3) (2011) 255-e119.
  • [62] Buie T. Potential Etiologic Factors of Microbiome Disruption in Autism. Clin Ther 37(5) (2015) 976–83.
  • [63] Dinan TG, Cryan JF. The impact of gut microbiota on brain and behaviour. Curr Opin Clin Nutr Metab Care 18(6) (2015) 552–8.
  • [64] Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21(37) (2015) 10609–20.
  • [65] Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5. Science 328(5975) (2010) 228–31.
  • [66] Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106(7) (2009) 2365–70.
  • [67] Liou AP, Paziuk M, Luevano J-M, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity. Sci Transl Med 5(178) (2013) 178ra41-178ra41.
  • [68] Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota–gut–brain axis in obesity. Lancet Gastroenterol Hepatol 2(10) (2017) 747–56.
  • [69] Jeffery IB, O’Toole PW, Öhman L, Claesson MJ, Deane J, Quigley EMM, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7) (2012) 997–1006.
  • [70] Kostic AD, Xavier RJ, Gevers D. The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology 146(6) (2014) 1489–99.
  • [71] Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol 37(1) (2015) 47–55.
  • [72] Khan KJ, Ullman TA, Ford AC, Abreu MT, Abadir A, Marshall JK, et al. Antibiotic Therapy in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Am J Gastroenterol 106(4) (2011) 661–73.
  • [73] Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 108(Supplement 1) (2011) 4554–61.
  • [74] Lee CH, Steiner T, Petrof EO, Smieja M, Roscoe D, Nematallah A, et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection. JAMA 315(2) (2016) 142.
  • [75] Kunde S, Pham A, Bonczyk S, Crumb T, Duba M, Conrad H, et al. Safety, Tolerability, and Clinical Response After Fecal Transplantation in Children and Young Adults With Ulcerative Colitis. J Pediatr Gastroenterol Nutr 56(6) (2013) 597–601.
  • [76] Qazi T, Amaratunga T, Barnes EL, Fischer M, Kassam Z, Allegretti JR. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: Systematic review and meta-analysis. Gut Microbes 8(6) (2017) 574–88.
  • [77] Molinie B, Zhang Y, Marin R, Nguyen DD, Ng A. Tu2033 Investigating the microbiome pre and post fecal microbiota therapy from active ulcerative colitis patients in a randomized placebo controlled trial. Gastroenterology 146(5 suppl 1) (2014) S-902.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.