PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 70 | 2 | 201-215
Article title

Influence of micropropagation with addition of kinetin on development of a willow (Salix viminalis L.)

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the dissertation was to determine (select) the best growth medium for a basket willow (Salix viminalis L.) which contains optimal concentration of kinetin. The plant material taken from three varieties of willows: Bjor, Jorr and Tora, which grew in the experimental field, was sterilized and placed on a complete MS (Murashige and Skoog, 1962) growth medium. The propagated plants were used in an experiment, where MS substrate was enriched by growth regulator – kinetin, in various concentrations (0.5 mg∙dm-3, 1 mg∙dm-3, 2 mg∙dm-3 and 3 mg∙dm-3). The substrate which contained 0.5 KIN was considered to be the best for willow’s propagation, because plants cultivated with usage of this medium have shown the largest mass, the highest number of shoots and leaves, and also the highest quantitative and elongation growth of the roots. Among examined varieties of Salix, the best one was Bjor variety, where evaluated parameters were distinctive in comparison to two remaining varieties.
Discipline
Publisher

Year
Volume
70
Issue
2
Pages
201-215
Physical description
Contributors
  • Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Str., 71-434 Szczecin, Poland, joanna.grendysz@zut.edu.pl
author
  • Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Str., 71-434 Szczecin, Poland
author
  • Department of Genetics, Plant Breeding and Biotechnology, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Str., 71-434 Szczecin, Poland
References
  • [1] P. von Aderkas, J. M. Bonga. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiology 20 (2000) 921-928
  • [2] J. B. Amo-Marco, M. D. Lledo. In vitro propagation of Salix tarraconensis Pau ex Font Quer, an endemic and threatened plant. In Vitro–Plant 32 (1996) 42-46
  • [3] L. Bergman, S. von Arnold and T. Eriksson. Effects of N 6-benzyladenine on shoots of five willow clones (Salix spp.) cultured in vitro. Plant cell, tissue and organ culture 4 (1985) 135-144
  • [4] S. S. Bhojwani, Micropropagation method for a hybrid willow (Salix matsudana × alba NZ-1002). New Zealand Journal of Botany 18(2) (1980) 209-214
  • [5] V. Chalupa. In vitro propagation of willows (Salix spp.), European mountain-ash (Sorbus aucuparia L.) and black locust (Robinia pseudoacacia L.). Biologia Plantarum 25(4) (1983) 305-307
  • [6] K. K. Dhir, R. Angrish, M. Bajaj. Micropropagation of Salix babylonica through. Proc. Indian Acad. Sci. 93(6) (1984) 655-660
  • [7] L. Grönroos. Somatic embryogenesis in Salix. Somatic Embryogenesis in Woody Plants (1995) 219-234
  • [8] M. I. Khan, N. Ahmad, M. Anis. The role of cytokinins on in vitro shoot production in Salix tetrasperma Roxb.: a tree of ecological importance. Trees 25(4) (2011) 577-584
  • [9] Y. A. Kuzovkina, and M. F. Quigley. Willows beyond wetlands: uses of Salix L. species for environmental projects. Water, Air, and Soil Pollution 162 (2005) 183-204
  • [10] M. Liesebach, G. Naujoks. Approaches on vegetative propagation of difficult-to-root Salix caprea. Plant cell, tissue and organ culture 79 (2004) 239-247
  • [11] G. Lloyd and B. McCown. Use of microculture for production and improvement of Rhododendron spp. HortScience 15 (1980) 416-417
  • [12] S. Lyyra, A. Lima, S. A. Merkle. In vitro regeneration of Salix nigra from adventitious shoots. Tree Physiology 26 (2006) 969-975
  • [13] J. Malá, H. Cvrčková, P. Máchová, J. Dostál, P. Šíma. Heavy metal accumulation by willow clones in short-time hydroponics. Journal of Forest Science 56(1) (2010) 28-34
  • [14] O. S. Mashkina, T. M. Tabatskaya, A. I. Gorobetsc, K. A. Shestibratov. Method of clonal micropropagation of different willow species and hybrids. Applied biochemistry and microbiology 46 (2010) 769-775
  • [15] A. A. Mohamed, S.M. Badawy, A. M. Sabbour and Z. K. Taha. Morphogenic responses via organogenesis of Salix calli in relation to the produced salicin in-vivo and in-vitro. Research Journal of Pharmaceutical, Biological and Chemical Sciences 6 (2015) 803-811
  • [16] T. Murashige, F. Skoog. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum (1962) 473-497
  • [17] G. Naujoks. Micropropagation of Salix caprea L. Protocols for Micropropagation of Woody Trees and Fruits (2007) 213-220
  • [18] V. B. de Paiva Neto, R. Paiva, D. E. Furtado. In vitro induction of adventicious roots in salix (Salix humboldtiana Willdenow) explants. Brazilian Archives of Biology and Technology 41(1) (1998) 82-87
  • [19] E. Palomo-Ríos, W. Macalpine, I. Shield, J. Amey, C. Karaoǧlu, J. West, S. Hanley, R. Krygier, A. Karp, H. D. Jones. Efficient method for rapid multiplication of clean and healthy willow clones via in vitro propagation with broad genotype applicability. Canadian Journal of Forest Research 45 (2015) 1662-1667
  • [20] S. Y. Park, Y. W. Kim, H. K. Moon, H. N. Murthy, Y. H. Choi, H. M. Cho Micropropagation of Salix pseudolasiogyne from nodal explants. Plant Cell, Tissue and Organ Culture 93(3) (2008) 341-346
  • [21] K. L. Perttu, P. J. Kowalik. Salix vegetation filters for purification of waters and soils. Biomass and Bioenergy 12(1) (1997) 9-19
  • [22] M. Pogorzelec, M. Parzymies, U. Bronowicka-Mielniczuk, B. Banach, A. Serafin. Pollen viability and tissue culture initiation of Salix lapponum, an endangered species in Poland. Acta Scientiarum Polonorum. Hortorum Cultus 14(6) (2015) 151-161
  • [23] T. Punshon and N. M. Dickinson. Acclimation of Salix to metal stress. New Phytologist 137 (1997) 303-314
  • [24] Z. K. T. Sharawy, Effect of Some Growth Regulators and Radiation Treatments On Morphological, Anatomical and Production Traits of Salicin Extracted From Salix Plant Using Tissue Culture Technique. CU Theses (2016) 1-21
  • [25] D. Skálová, B. Navrátilová, L. Richterová, M. Knitl, M. Sochor, R. J. Vašut. Biotechnological methods of in vitro propagation in willows (Salix spp.). Open Life Sciences 7(5) (2012) 931-940
  • [26] L. B. Smart, K. D. Cameron. Genetic improvement of willow (Salix spp.) as a dedicated bioenergy crop. Genetic improvement of bioenergy crops. (2008) 377-396
  • [27] P. Vervaeke, S. Luyssaert, J. Mertens, E. Meers, F. M. G. Tack, N. Lust. Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environmental pollution 126 (2003) 275-282
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-46dd8359-8248-40ca-9e8c-3f34c52ee66c
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.