Preferences help
enabled [disable] Abstract
Number of results
2020 | 25 | 5 - 15
Article title


Title variants
Languages of publication
This review considers articles on the formation of hydrogels based on chitosan as well as succinylated and quaternized chitosan derivatives. They are synthesized using low toxicity reagents, under ordinary conditions (low production costs). Chitosan derivatives are soluble in an extended range of pH values and characterized by mucoadhesiveness, bioavailability and biodegradability, which extends the potential of their medical applications. One of the most important properties of chitosan and its derivatives is the ability to form hydrogels. Depending on the nature of the bonds that occur during formation, hydrogels are divided into chemically or physically crosslinked, or a mixture of the two. Chemically crosslinked gels have covalent bonds, while physically crosslinked gels are formed by noncovalent interactions, for example, ionic. Mixed hydrogels have both types of crosslinking.
5 - 15
Physical description
  • Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences.
  • Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences.
  • Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences
  • Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences
  • Varlamov VP, Il’ina AV, Shagdarova BTs, Lunkov AP, Mysyakina IS; (2020) Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. Biochemistry (Moscow), 85 (1), S154-S176. DOI: 10.1134/S0006297920140084
  • Naveed M, Phil L, Sohail M, Hasnat M, Baig MMFA, Ihsan AU, Shumzaid M, Kakar MU, Khan TM, Akabar MD, Hussain MI, Zhou Q-G; (2019) Chitosan oligosaccharide (COS): An overview. Int. J. Biol. Macromol. 129, 827–843.
  • Muzzarelli RAA, Morganti P, Morganti G, Palombo P, Palombo M, Biagini G, Mattioli-Belmonte M, Giantomassi F, Orlandi F, Muzzarelli C; (2007) Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr. Polym. 70 (3) 274–284 DOI: 10.1016/j.carbpol.2007.04.008
  • Rosiak JM, Yoshii F; (1999) Hydrogels and their medical applications. Nucl. Instrum. Methods Phys. Res., B. 151(1-4), 56–64. DOI: 10.1016/s0168-583x(99)00118-4
  • Hoffman AS; (2012). Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23. DOI: 10.1016/j.addr.2012.09.010
  • Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE; (2014) Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release, J Control Release. 190, 254–273. DOI: 10.1016/j.jconrel.2014.03.052
  • Ho M-H, Kuo P-Y, Hsieh H-J, Hsien T-Y, Hou L-T, Lai J-Y, Wang D-M; (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 25(1), 129–138. DOI: 10.1016/S0142-9612(03)00483-6
  • Xu Y, Han J, Lin H; (2017) Fabrication and characterization of a self-crosslinking chitosan hydrogel under mild conditions without the use of strong bases. Carbohydr. Polym. 156, 372–379. DOI: 10.1016/j.carbpol.2016.09.046
  • Nie J, Wang Z, Hu Q; (2016) Chitosan Hydrogel Structure Modulated by Metal Ions. Sci. Rep. 6(1), DOI:10.1038/srep36005
  • Vishnu Priya M, Sabitha M, Jayakumar R; (2016) Colloidal chitin nanogels: A plethora of applications under one shell. Carbohydr. Polym. 136, 609–617. DOI: 10.1016/j.carbpol.2015.09.054
  • Liu L, Tang X, Wang Y, Guo S; (2011) Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int. J. Pharm. 414(1-2), 6–15. DOI:10.1016/j.ijpharm.2011.04.052
  • Casettari L, Cespi M, Palmieri GF, Bonacucina G; (2013) Characterization of the interaction between chitosan and inorganic sodium phosphates by means of rheological and optical microscopy studies. Carbohydr. Polym. 91(2), 597–602. DOI: 10.1016/j.carbpol.2012.08.037
  • Lipatova IM, Yusova AA, Losev NV, Indeikin EA; (2019) Gelation in solutions of low deacetylated chitosan initiated by high shear stresses. Int. J. Biol. Macromol. 139, 550-557. DOI: 10.1016/j.ijbiomac.2019.07.164
  • Thangavel P, Ramachandran B, Chakraborty S, Kannan R, Lonchin S, Muthuvijayan V (2017) Accelerated Healing of Diabetic Wounds Treated with L-Glutamic acid Loaded Hydrogels Through Enhanced Collagen Deposition and Angiogenesis: An In Vivo Study. Sci. Rep. 7(1). DOI: 10.1038/s41598-017-10882-1
  • Kordestani SS (2017) A Novel Chitosan-Based Gel for Burn Wounds. In: M Shiffman, M Low (eds) Burns, Infections and Wound Management, Recent Clinical Techniques, Results, and Research in Wounds, vol 2. Springer, Cham, 77-93. DOI: 10.1007/15695_ 2017_27
  • Leung H-W; (2001) Ecotoxicology of Glutaraldehyde: Review of Environmental Fate and Effects Studies. Ecotoxicol. Environ. Saf. 49(1), 26-39. DOI: 10.1006/eesa.2000.2031
  • Pourjavadi A, Aghajani V, Ghasemzadeh H; (2008) Synthesis, characterization and swelling behavior of chitosan-sucrose as a novel full-polysaccharide superabsorbent hydrogel. J. Appl. Polym. Sci. 109(4), 2648–2655. DOI: 10.1002/app.28369
  • Nada AA, Ali EA, Soliman A. A. F; (2019) Biocompatible chitosan-based hydrogel with tunable mechanical and physical properties formed at body temperature. Int. J. Biol. Macromol. 131, 624–632. DOI: 10.1016/j.ijbiomac.2019.03.093
  • Sharma S, Kumar R, Kumari P, Kharwar RN, Yadav AK, Saripella S; (2018) Mechanically magnified chitosan-based hydrogel as tissue adhesive and antimicrobial candidate. Int. J. Biol. Macromol. 125, 109-115. DOI: 10.1016/j.ijbiomac.2018.12.018
  • Sharma S, Kumar A, Deepak, Kumar R, Rana NK, Koch B; (2018) Development of a novel chitosan based biocompatible and self-healing hydrogel for controlled release of hydrophilic drug. Int. J. Biol. Macromol. 116, 37–44. DOI: 10.1016/j.ijbiomac.2018.05.020
  • Jin J, Song M, Hourston D J (2004) Novel chitosan based films cross-linked by genipin with improved physical properties. Biomacromolecules. 5 (1), 162–168. DOI: 10.1021/bm034286m
  • Vílchez S, Samitier V, Porras M, Esquena J, Erra P; (2009) Chitosan Hydrogels Covalently Crosslinked with a Natural Reagent. Tenside Surfact. Det. 46(1), 13–17. DOI: 10.3139/113.110002
  • Dimida S, Demitri C, Benedictis VMD, Scalera F, Gervaso F, Sannino A; (2015) Genipin-cross-linked chitosan-based hydrogels: Reaction kinetics and structurerelated characteristics. J. Appl. Polym. Sci. 132(28), DOI: 10.1002/app.42256
  • Butler MF, Ng Y-F, Pudney PDA; (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin J Polym. Sci. Pol. Chem. 41 (24), 3941-3953. DOI: 10.1002/pola.10960
  • Pomari AA do N, Montanheiro TL do A, de Siqueira CP, Silva RS, Tada DB, Lemes AP; (2019) Chitosan Hydrogels Crosslinked by Genipin and Reinforced with Cellulose Nanocrystals: Production and Characterization. J. Compos. Sci. 3(3), 84. DOI: 10.3390/jcs3030084
  • Arteche Pujana M, Pérez-Álvarez L, Cesteros Iturbe LC, Katime I; (2013) Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr. Polym. 94(2), 836–842. DOI: 10.1016/j.carbpol.2013.01.082
  • Butler MF, Ng Y-F, Pudney PDA; (2003) Mechanism and kinetics of the cross linking reaction between biopolymers containing primary menu groups and genipin. J. Polym. Sci. Part A: Polym. Chem., 41(24), 3941-3953. DOI: 10.1002/pola.10960
  • Delmar K, Bianco-Peled H; (2015) The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin. Carbohydr. Polym. 127, 28–37. DOI:10.1016/j.carbpol.2015.03.039
  • Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N; (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater Sci. 55(7), 675–709. DOI: 10.1016/j.pmatsci.2010.03.001
  • Bashir S, Teo YY, Ramesh S, Ramesh K, Khan AA; (2015) N-succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review. Rev. Chem. Eng. 31(6), 563–597. DOI 10.1515/revce-201
  • Bashir S, Team YY, Ramesh SR, Ramesh K, Rizwan M; (2019) Synthesis and characterization of ph-sensitive n-succinyl chitosan hydrogel and its properties for biomedical applications. J. Chil. Than. Soc. [online]. 64(3), 4571-4574.
  • Ying GQ, Yang H, Yi Y, Xu F (2007) Relationships between the molecular structure and moisture-absorption and moisture-retention abilities of succinyl chitosan. Polymer Bulletin. 59(4), 509-516. DOI: 10.1007/s00289-007-0790-9
  • Tan H, Ma R, Lin C, Liu Z, Tang T. (2013) Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. Int. J. Mol. Sci. 14(1), 1854–1869. DOI: 10.3390/ijms14011854
  • Shagdarova B, Lunkov A, Il’ina A, Varlamov V; (2019) Investigation of the properties of N-[(2-hydroxy-3-trimethylammonium) propyl] chloride chitosan derivatives. Int. J. Biol. Macromol. 124, 994-1001. DOI:
  • Shi W, Ji Y, Zhang X, Shu S, Wu Z; (2011) Characterization of pH - and thermosensitive hydrogel as a vehicle for controlled protein delivery. J. Pharm. Sci. 100 (3), 886-895 DOI: 10.1002/jps.22328
  • Ji QX, Zhao QS., Deng J, Lü R; (2010) A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: preparation, antibacterial activity and toxicity evaluation. J Mater Sci: Mater Med. 21(8), 2435–2442. DOI: 10.1007/s10856-010-4098-1
  • Ji QX, Chen XG, Zhao QS, Liu CS, Cheng XJ, Wang LC; (2009) Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties. J Mater Sci: Mater Med., 20(8), 1603–1610. DOI: 10.1007/s10856-009-3729-x
  • Palacio DA, Urbano BF, Rivas BL; (2018) Hydrogels based on alkylated chitosan and polyelectrolyte copolymers. J. Appl. Polym. Sci. 135(31), 46556-65. DOI: 10.1002/ app.46556
  • Wang B, Qiao C, Gao X, Yang X, Li Y, Li T; (2017) Rheological properties of N - [(2-hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride. Carbohydr. Polym. 171, 50–58. DOI: 10.1016/j.carbpol.2017.05.008
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.